Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.01798
Cited By
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
3 June 2021
Mathias Niepert
Pasquale Minervini
Luca Franceschi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions"
19 / 19 papers shown
Title
A Fused Gromov-Wasserstein Approach to Subgraph Contrastive Learning
Amadou S. Sangare
Nicolas Dunou
Jhony H. Giraldo
Fragkiskos D. Malliaros
SSL
64
0
0
28 Feb 2025
LPGD: A General Framework for Backpropagation through Embedded Optimization Layers
Anselm Paulus
Georg Martius
Vít Musil
AI4CE
49
1
0
08 Jul 2024
Learning Latent Graph Structures and their Uncertainty
A. Manenti
Daniele Zambon
Cesare Alippi
BDL
38
1
0
30 May 2024
SynJax: Structured Probability Distributions for JAX
Miloš Stanojević
Laurent Sartran
SyDa
13
4
0
07 Aug 2023
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Jayanta Mandi
James Kotary
Senne Berden
Maxime Mulamba
Víctor Bucarey
Tias Guns
Ferdinando Fioretto
AI4CE
28
55
0
25 Jul 2023
Differentiable Random Partition Models
Thomas M. Sutter
Alain Ryser
Joram Liebeskind
Julia E. Vogt
42
3
0
26 May 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
35
14
0
08 May 2023
Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural Networks
Indro Spinelli
Riccardo Bianchini
Simone Scardapane
26
1
0
22 Feb 2023
Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective
Michael E. Sander
J. Puigcerver
Josip Djolonga
Gabriel Peyré
Mathieu Blondel
21
18
0
02 Feb 2023
DAG Learning on the Permutahedron
Valentina Zantedeschi
Luca Franceschi
Jean Kaddour
Matt J. Kusner
Vlad Niculae
27
11
0
27 Jan 2023
A Solver-Free Framework for Scalable Learning in Neural ILP Architectures
Yatin Nandwani
Rishabh Ranjan
Mausam
Parag Singla
33
7
0
17 Oct 2022
SIMPLE: A Gradient Estimator for
k
k
k
-Subset Sampling
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Guy Van den Broeck
BDL
45
24
0
04 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
33
7
0
28 Sep 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
26
76
0
19 Jul 2022
On Quantum Circuits for Discrete Graphical Models
Nico Piatkowski
Christa Zoufal
19
4
0
01 Jun 2022
Sparse Graph Learning from Spatiotemporal Time Series
Andrea Cini
Daniele Zambon
Cesare Alippi
CML
AI4TS
43
18
0
26 May 2022
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
716
0
13 Jun 2018
Learning Attitudes and Attributes from Multi-Aspect Reviews
Julian McAuley
J. Leskovec
Dan Jurafsky
200
296
0
15 Oct 2012
1