ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01488
  4. Cited By
Minimax Optimization with Smooth Algorithmic Adversaries

Minimax Optimization with Smooth Algorithmic Adversaries

2 June 2021
Tanner Fiez
Chi Jin
Praneeth Netrapalli
Lillian J. Ratliff
    AAML
ArXivPDFHTML

Papers citing "Minimax Optimization with Smooth Algorithmic Adversaries"

6 / 6 papers shown
Title
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
7
0
28 Jan 2025
On adversarial robustness and the use of Wasserstein ascent-descent
  dynamics to enforce it
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
24
5
0
09 Jan 2023
Primal Dual Alternating Proximal Gradient Algorithms for Nonsmooth
  Nonconvex Minimax Problems with Coupled Linear Constraints
Primal Dual Alternating Proximal Gradient Algorithms for Nonsmooth Nonconvex Minimax Problems with Coupled Linear Constraints
Hui-Li Zhang
Junlin Wang
Zi Xu
Y. Dai
88
4
0
09 Dec 2022
Proximal Learning With Opponent-Learning Awareness
Proximal Learning With Opponent-Learning Awareness
S. Zhao
Chris Xiaoxuan Lu
Roger C. Grosse
Jakob N. Foerster
34
21
0
18 Oct 2022
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
33
100
0
16 Oct 2019
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
1