ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01342
  4. Cited By
SAINT: Improved Neural Networks for Tabular Data via Row Attention and
  Contrastive Pre-Training

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

2 June 2021
Gowthami Somepalli
Micah Goldblum
Avi Schwarzschild
C. Bayan Bruss
Tom Goldstein
    LMTD
ArXivPDFHTML

Papers citing "SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training"

50 / 53 papers shown
Title
Harnessing LLMs Explanations to Boost Surrogate Models in Tabular Data Classification
Harnessing LLMs Explanations to Boost Surrogate Models in Tabular Data Classification
Ruxue Shi
Hengrui Gu
Xu Shen
Xin Wang
LMTD
193
0
0
09 May 2025
Griffin: Towards a Graph-Centric Relational Database Foundation Model
Griffin: Towards a Graph-Centric Relational Database Foundation Model
Yanbo Wang
Xiyuan Wang
Quan Gan
Minjie Wang
Qibin Yang
David Wipf
Muhan Zhang
109
0
0
08 May 2025
Attention-enabled Explainable AI for Bladder Cancer Recurrence Prediction
Attention-enabled Explainable AI for Bladder Cancer Recurrence Prediction
Saram Abbas
Naeem Soomro
R. Shafik
Rakesh Heer
Kabita Adhikari
51
0
0
30 Apr 2025
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
Santosh Rajagopalan
Jonathan Vronsky
Songbai Yan
S. Alireza Golestaneh
Shubhra Chandra
Min Zhou
66
0
0
26 Apr 2025
TabKAN: Advancing Tabular Data Analysis using Kolmogorov-Arnold Network
TabKAN: Advancing Tabular Data Analysis using Kolmogorov-Arnold Network
Ali Eslamian
Alireza Afzal Aghaei
Qiang Cheng
LMTD
82
0
0
09 Apr 2025
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Siyi Du
Xinzhe Luo
D. O’Regan
Chen Qin
69
0
0
08 Mar 2025
Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models as Attribution Regularizers for Efficient Model Training
Davor Vukadin
Marin Šilić
Goran Delač
41
0
0
27 Feb 2025
Imputation for prediction: beware of diminishing returns
Imputation for prediction: beware of diminishing returns
Marine Le Morvan
Gaël Varoquaux
AI4TS
78
1
0
21 Feb 2025
Tabular Embeddings for Tables with Bi-Dimensional Hierarchical Metadata and Nesting
Tabular Embeddings for Tables with Bi-Dimensional Hierarchical Metadata and Nesting
Gyanendra Shrestha
Chutain Jiang
Sai Akula
Vivek Yannam
Anna Pyayt
Michael Gubanov
LMTD
97
0
0
20 Feb 2025
Zero-Shot Decision Tree Construction via Large Language Models
Lucas Carrasco
Felipe Urrutia
Andrés Abeliuk
63
0
0
28 Jan 2025
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Yury Gorishniy
Akim Kotelnikov
Artem Babenko
LMTD
MoE
94
6
0
31 Oct 2024
T-JEPA: Augmentation-Free Self-Supervised Learning for Tabular Data
T-JEPA: Augmentation-Free Self-Supervised Learning for Tabular Data
Hugo Thimonier
José Lucas De Melo Costa
Fabrice Popineau
Arpad Rimmel
Bich-Liên Doan
53
1
0
07 Oct 2024
Challenging Gradient Boosted Decision Trees with Tabular Transformers
  for Fraud Detection at Booking.com
Challenging Gradient Boosted Decision Trees with Tabular Transformers for Fraud Detection at Booking.com
Sergei Krutikov
Bulat Khaertdinov
Rodion Kiriukhin
Shubham Agrawal
Kees Jan de Vries
LMTD
48
0
0
22 May 2024
A Comprehensive Survey on Data Augmentation
A Comprehensive Survey on Data Augmentation
Zaitian Wang
Pengfei Wang
Kunpeng Liu
Pengyang Wang
Yanjie Fu
Chang-Tien Lu
Charu Aggarwal
Jian Pei
Yuanchun Zhou
ViT
109
22
0
15 May 2024
Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and
  Understanding -- A Survey
Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey
Xi Fang
Weijie Xu
Fiona Anting Tan
Jiani Zhang
Ziqing Hu
Yanjun Qi
Scott Nickleach
Diego Socolinsky
Srinivasan H. Sengamedu
Christos Faloutsos
LMTD
ALM
42
66
0
27 Feb 2024
CARTE: Pretraining and Transfer for Tabular Learning
CARTE: Pretraining and Transfer for Tabular Learning
Myung Jun Kim
Léo Grinsztajn
Gaël Varoquaux
LMTD
62
13
0
26 Feb 2024
HyperFast: Instant Classification for Tabular Data
HyperFast: Instant Classification for Tabular Data
David Bonet
D. M. Montserrat
Xavier Giró-i-Nieto
A. Ioannidis
46
15
0
22 Feb 2024
A Survey on Self-Supervised Learning for Non-Sequential Tabular Data
A Survey on Self-Supervised Learning for Non-Sequential Tabular Data
Wei-Yao Wang
Wei-Wei Du
Derek Xu
Wei Wang
Wenjie Peng
LMTD
38
7
0
02 Feb 2024
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
Jan Rabenseifner
Jan Teichert-Kluge
Philipp Bach
Victor Chernozhukov
Martin Spindler
Suhas Vijaykumar
BDL
CML
18
6
0
01 Feb 2024
Towards a Foundation Purchasing Model: Pretrained Generative
  Autoregression on Transaction Sequences
Towards a Foundation Purchasing Model: Pretrained Generative Autoregression on Transaction Sequences
Piotr Skalski
David Sutton
Stuart Burrell
Iker Perez
Jason Wong
AI4TS
42
2
0
03 Jan 2024
Polynomial-based Self-Attention for Table Representation learning
Polynomial-based Self-Attention for Table Representation learning
Jayoung Kim
Yehjin Shin
Jeongwhan Choi
Hyowon Wi
Noseong Park
LMTD
27
2
0
12 Dec 2023
Comparative Analysis of Transformers for Modeling Tabular Data: A
  Casestudy using Industry Scale Dataset
Comparative Analysis of Transformers for Modeling Tabular Data: A Casestudy using Industry Scale Dataset
Usneek Singh
Piyush Arora
Shamika Ganesan
Mohit Kumar
Siddhant Kulkarni
Salil R. Joshi
61
2
0
24 Nov 2023
Scaling TabPFN: Sketching and Feature Selection for Tabular Prior-Data
  Fitted Networks
Scaling TabPFN: Sketching and Feature Selection for Tabular Prior-Data Fitted Networks
Ben Feuer
Chinmay Hegde
Niv Cohen
37
10
0
17 Nov 2023
On the Importance of Step-wise Embeddings for Heterogeneous Clinical
  Time-Series
On the Importance of Step-wise Embeddings for Heterogeneous Clinical Time-Series
Rita Kuznetsova
Alizée Pace
Manuel Burger
Hugo Yèche
Gunnar Rätsch
AI4TS
39
5
0
15 Nov 2023
Learning Interpretable Rules for Scalable Data Representation and
  Classification
Learning Interpretable Rules for Scalable Data Representation and Classification
Zhuo Wang
Wei Zhang
Ning Liu
Jianyong Wang
30
6
0
22 Oct 2023
Survey on Imbalanced Data, Representation Learning and SEP Forecasting
Survey on Imbalanced Data, Representation Learning and SEP Forecasting
Josias Moukpe
AI4TS
27
0
0
11 Oct 2023
UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model
  in Data Science
UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science
Yazheng Yang
Yuqi Wang
Guangyi Liu
Ledell Yu Wu
Qi Liu
LMTD
32
16
0
18 Jul 2023
Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Kenta Oono
Nontawat Charoenphakdee
K. Bito
Zhengyan Gao
Yoshiaki Ota
...
Kohei Hayashi
Yuki Saito
Koki Tsuda
Hiroshi Maruyama
K. Hayashi
32
1
0
19 Jun 2023
Enabling tabular deep learning when $d \gg n$ with an auxiliary
  knowledge graph
Enabling tabular deep learning when d≫nd \gg nd≫n with an auxiliary knowledge graph
Camilo Ruiz
Hongyu Ren
Kexin Huang
J. Leskovec
25
2
0
07 Jun 2023
Gemtelligence: Accelerating Gemstone classification with Deep Learning
Gemtelligence: Accelerating Gemstone classification with Deep Learning
Tommaso Bendinelli
Luca Biggio
D. Nyfeler
Abhigyan Ghosh
P. Tollan
M. Kirschmann
Olga Fink
25
1
0
31 May 2023
MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation,
  Enrichment, and Refinement
MediTab: Scaling Medical Tabular Data Predictors via Data Consolidation, Enrichment, and Refinement
Zifeng Wang
Chufan Gao
Cao Xiao
Jimeng Sun
LMTD
28
12
0
20 May 2023
Self-Reinforcement Attention Mechanism For Tabular Learning
Self-Reinforcement Attention Mechanism For Tabular Learning
Kodjo Mawuena Amekoe
M. Dilmi
Hanene Azzag
M. Lebbah
Zaineb Chelly Dagdia
Gregoire Jaffre
43
0
0
19 May 2023
Rethinking Data Augmentation for Tabular Data in Deep Learning
Rethinking Data Augmentation for Tabular Data in Deep Learning
Soma Onishi
Shoya Meguro
LMTD
26
14
0
17 May 2023
LEURN: Learning Explainable Univariate Rules with Neural Networks
LEURN: Learning Explainable Univariate Rules with Neural Networks
Çağlar Aytekin
FAtt
29
0
0
27 Mar 2023
STUNT: Few-shot Tabular Learning with Self-generated Tasks from
  Unlabeled Tables
STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables
Jaehyun Nam
Jihoon Tack
Kyungmin Lee
Hankook Lee
Jinwoo Shin
LMTD
SSL
21
31
0
02 Mar 2023
Embeddings for Tabular Data: A Survey
Embeddings for Tabular Data: A Survey
Rajat Singh
Srikanta J. Bedathur
LMTD
37
2
0
23 Feb 2023
One Transformer for All Time Series: Representing and Training with Time-Dependent Heterogeneous Tabular Data
One Transformer for All Time Series: Representing and Training with Time-Dependent Heterogeneous Tabular Data
Simone Luetto
Fabrizio Garuti
E. Sangineto
L. Forni
Rita Cucchiara
LMTD
AI4TS
87
10
0
13 Feb 2023
Local Contrastive Feature learning for Tabular Data
Local Contrastive Feature learning for Tabular Data
Zhabiz Gharibshah
Xingquan Zhu
SSL
18
7
0
19 Nov 2022
The Missing Indicator Method: From Low to High Dimensions
The Missing Indicator Method: From Low to High Dimensions
Mike Van Ness
Tomas M. Bosschieter
Roberto Halpin-Gregorio
Madeleine Udell
AI4TS
27
15
0
16 Nov 2022
Flaky Performances when Pretraining on Relational Databases
Flaky Performances when Pretraining on Relational Databases
Shengchao Liu
David Vazquez
Jian Tang
Pierre-Andre Noel
31
2
0
09 Nov 2022
Realistic Data Augmentation Framework for Enhancing Tabular Reasoning
Realistic Data Augmentation Framework for Enhancing Tabular Reasoning
D. K. Santhosh Kumar
Vivek Gupta
Soumya Sharma
Shuo Zhang
LMTD
21
3
0
23 Oct 2022
TabLLM: Few-shot Classification of Tabular Data with Large Language
  Models
TabLLM: Few-shot Classification of Tabular Data with Large Language Models
S. Hegselmann
Alejandro Buendia
Hunter Lang
Monica Agrawal
Xiaoyi Jiang
David Sontag
LMTD
55
211
0
19 Oct 2022
Language Models are Realistic Tabular Data Generators
Language Models are Realistic Tabular Data Generators
V. Borisov
Kathrin Seßler
Tobias Leemann
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
223
0
12 Oct 2022
Why do tree-based models still outperform deep learning on tabular data?
Why do tree-based models still outperform deep learning on tabular data?
Léo Grinsztajn
Edouard Oyallon
Gaël Varoquaux
LMTD
35
356
0
18 Jul 2022
Revisiting Pretraining Objectives for Tabular Deep Learning
Revisiting Pretraining Objectives for Tabular Deep Learning
Ivan Rubachev
Artem Alekberov
Yu. V. Gorishniy
Artem Babenko
LMTD
21
41
0
07 Jul 2022
Transfer Learning with Deep Tabular Models
Transfer Learning with Deep Tabular Models
Roman Levin
Valeriia Cherepanova
Avi Schwarzschild
Arpit Bansal
C. Bayan Bruss
Tom Goldstein
A. Wilson
Micah Goldblum
OOD
FedML
LMTD
75
58
0
30 Jun 2022
TransTab: Learning Transferable Tabular Transformers Across Tables
TransTab: Learning Transferable Tabular Transformers Across Tables
Zifeng Wang
Jimeng Sun
LMTD
36
137
0
19 May 2022
Perturbation of Deep Autoencoder Weights for Model Compression and
  Classification of Tabular Data
Perturbation of Deep Autoencoder Weights for Model Compression and Classification of Tabular Data
Manar D. Samad
Sakib Abrar
22
12
0
17 May 2022
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
13
156
0
10 Mar 2022
Robbing the Fed: Directly Obtaining Private Data in Federated Learning
  with Modified Models
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
38
145
0
25 Oct 2021
12
Next