ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01288
  4. Cited By
Bottom-up and top-down approaches for the design of neuromorphic
  processing systems: Tradeoffs and synergies between natural and artificial
  intelligence

Bottom-up and top-down approaches for the design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial intelligence

2 June 2021
Charlotte Frenkel
D. Bol
Giacomo Indiveri
ArXivPDFHTML

Papers citing "Bottom-up and top-down approaches for the design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial intelligence"

12 / 12 papers shown
Title
Causal pieces: analysing and improving spiking neural networks piece by piece
Causal pieces: analysing and improving spiking neural networks piece by piece
Dominik Dold
Philipp Christian Petersen
CML
38
0
0
18 Apr 2025
Active Dendrites Enable Efficient Continual Learning in
  Time-To-First-Spike Neural Networks
Active Dendrites Enable Efficient Continual Learning in Time-To-First-Spike Neural Networks
Lorenzo Pes
Rick Luiken
Federico Corradi
Charlotte Frenkel
28
5
0
30 Apr 2024
Neuromorphic Intermediate Representation: A Unified Instruction Set for
  Interoperable Brain-Inspired Computing
Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing
Jens Egholm Pedersen
Steven Abreu
Matthias Jobst
Gregor Lenz
Vittorio Fra
...
Gianvito Urgese
Sadasivan Shankar
Terrence C. Stewart
Jason Eshraghian
Sadique Sheik
27
30
0
24 Nov 2023
Applications of Spiking Neural Networks in Visual Place Recognition
Applications of Spiking Neural Networks in Visual Place Recognition
S. Hussaini
Michael Milford
Tobias Fischer
66
6
0
22 Nov 2023
NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
Jason Yik
Korneel Van den Berghe
Douwe den Blanken
Younes Bouhadjar
Maxime Fabre
...
Fatima Tuz Zohora
Charlotte Frenkel
Vijay Janapa Reddi
Charlotte Frenkel
Vijay Janapa Reddi
23
17
0
10 Apr 2023
Fully neuromorphic vision and control for autonomous drone flight
Fully neuromorphic vision and control for autonomous drone flight
Federico Paredes-Valles
J. Hagenaars
Julien Dupeyroux
S. Stroobants
Ying Xu
Guido de Croon
25
36
0
15 Mar 2023
Disentanglement with Biological Constraints: A Theory of Functional Cell
  Types
Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James C. R. Whittington
W. Dorrell
Surya Ganguli
Timothy Edward John Behrens
38
39
0
30 Sep 2022
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Spiking Neural Networks Hardware Implementations and Challenges: a
  Survey
Spiking Neural Networks Hardware Implementations and Challenges: a Survey
Maxence Bouvier
A. Valentian
T. Mesquida
F. Rummens
M. Reyboz
Elisa Vianello
E. Beigné
50
113
0
04 May 2020
Benchmarking TinyML Systems: Challenges and Direction
Benchmarking TinyML Systems: Challenges and Direction
Colby R. Banbury
Vijay Janapa Reddi
Max Lam
William Fu
A. Fazel
...
Jae-sun Seo
Jeff Sieracki
Urmish Thakker
Marian Verhelst
Poonam Yadav
98
228
0
10 Mar 2020
Neuromorphic Deep Learning Machines
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
127
257
0
16 Dec 2016
Memory and information processing in neuromorphic systems
Memory and information processing in neuromorphic systems
Giacomo Indiveri
Shih-Chii Liu
174
568
0
10 Jun 2015
1