ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01277
  4. Cited By
Data augmentation and pre-trained networks for extremely low data
  regimes unsupervised visual inspection

Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection

2 June 2021
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
ArXiv (abs)PDFHTML

Papers citing "Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection"

28 / 28 papers shown
Title
Synthetic training data generation for deep learning based quality
  inspection
Synthetic training data generation for deep learning based quality inspection
Pierre Gutierrez
Maria Luschkova
Antoine Cordier
Mustafa Shukor
Mona Schappert
Tim Dahmen
37
21
0
07 Apr 2021
Active learning using weakly supervised signals for quality inspection
Active learning using weakly supervised signals for quality inspection
Antoine Cordier
Deepan Das
Pierre Gutierrez
41
7
0
07 Apr 2021
DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation
DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation
Jie Yang
Yong Shi
Zhiquan Qi
UQCV
138
120
0
13 Dec 2020
Multiresolution Knowledge Distillation for Anomaly Detection
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
132
443
0
22 Nov 2020
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
848
0
17 Nov 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
85
604
0
16 Jul 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
66
199
0
03 Jul 2020
Task-agnostic Out-of-Distribution Detection Using Kernel Density
  Estimation
Task-agnostic Out-of-Distribution Detection Using Kernel Density Estimation
Ertunc Erdil
K. Chaitanya
Neerav Karani
E. Konukoglu
OODD
43
7
0
18 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
83
90
0
30 May 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
133
240
0
28 May 2020
Classification-Based Anomaly Detection for General Data
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
54
351
0
05 May 2020
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Niv Cohen
Yedid Hoshen
84
477
0
05 May 2020
Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
  Comparative Study
Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study
Christoph Baur
Stefan Denner
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
OOD
77
292
0
07 Apr 2020
Why is the Mahalanobis Distance Effective for Anomaly Detection?
Why is the Mahalanobis Distance Effective for Anomaly Detection?
Ryo Kamoi
Kei Kobayashi
OODD
177
58
0
01 Mar 2020
Deep Nearest Neighbor Anomaly Detection
Deep Nearest Neighbor Anomaly Detection
Liron Bergman
Niv Cohen
Yedid Hoshen
UQCV
87
160
0
24 Feb 2020
Novelty Detection Via Blurring
Novelty Detection Via Blurring
Sung-Ik Choi
Sae-Young Chung
UQCV
49
36
0
27 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
84
666
0
06 Nov 2019
End-to-End Defect Detection in Automated Fiber Placement Based on
  Artificially Generated Data
End-to-End Defect Detection in Automated Fiber Placement Based on Artificially Generated Data
S. Zambal
Christoph Heindl
C. Eitzinger
J. Scharinger
26
27
0
11 Oct 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OODSSL
56
950
0
28 Jun 2019
Deep Semi-Supervised Anomaly Detection
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
58
547
0
06 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DVMedIm
164
18,193
0
28 May 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Improving Unsupervised Defect Segmentation by Applying Structural
  Similarity to Autoencoders
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
81
669
0
05 Jul 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
97
607
0
28 May 2018
Learning Deep Features for One-Class Classification
Learning Deep Features for One-Class Classification
Pramuditha Perera
Vishal M. Patel
116
371
0
16 Jan 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedImGAN
112
2,233
0
17 Mar 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,441
0
18 May 2015
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
156
1,455
0
21 Dec 2013
1