Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.01277
Cited By
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
2 June 2021
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection"
28 / 28 papers shown
Title
Synthetic training data generation for deep learning based quality inspection
Pierre Gutierrez
Maria Luschkova
Antoine Cordier
Mustafa Shukor
Mona Schappert
Tim Dahmen
37
21
0
07 Apr 2021
Active learning using weakly supervised signals for quality inspection
Antoine Cordier
Deepan Das
Pierre Gutierrez
41
7
0
07 Apr 2021
DFR: Deep Feature Reconstruction for Unsupervised Anomaly Segmentation
Jie Yang
Yong Shi
Zhiquan Qi
UQCV
138
120
0
13 Dec 2020
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
132
443
0
22 Nov 2020
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
848
0
17 Nov 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
85
604
0
16 Jul 2020
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
66
199
0
03 Jul 2020
Task-agnostic Out-of-Distribution Detection Using Kernel Density Estimation
Ertunc Erdil
K. Chaitanya
Neerav Karani
E. Konukoglu
OODD
43
7
0
18 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
83
90
0
30 May 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
133
240
0
28 May 2020
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
54
351
0
05 May 2020
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Niv Cohen
Yedid Hoshen
84
477
0
05 May 2020
Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study
Christoph Baur
Stefan Denner
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
OOD
77
292
0
07 Apr 2020
Why is the Mahalanobis Distance Effective for Anomaly Detection?
Ryo Kamoi
Kei Kobayashi
OODD
177
58
0
01 Mar 2020
Deep Nearest Neighbor Anomaly Detection
Liron Bergman
Niv Cohen
Yedid Hoshen
UQCV
87
160
0
24 Feb 2020
Novelty Detection Via Blurring
Sung-Ik Choi
Sae-Young Chung
UQCV
49
36
0
27 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
84
666
0
06 Nov 2019
End-to-End Defect Detection in Automated Fiber Placement Based on Artificially Generated Data
S. Zambal
Christoph Heindl
C. Eitzinger
J. Scharinger
26
27
0
11 Oct 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
56
950
0
28 Jun 2019
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
58
547
0
06 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
164
18,193
0
28 May 2019
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
81
669
0
05 Jul 2018
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
97
607
0
28 May 2018
Learning Deep Features for One-Class Classification
Pramuditha Perera
Vishal M. Patel
116
371
0
16 Jan 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
112
2,233
0
17 Mar 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.9K
77,441
0
18 May 2015
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
156
1,455
0
21 Dec 2013
1