ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01138
  4. Cited By
Learning neural network potentials from experimental data via
  Differentiable Trajectory Reweighting
v1v2 (latest)

Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting

2 June 2021
Stephan Thaler
Julija Zavadlav
ArXiv (abs)PDFHTML

Papers citing "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting"

22 / 22 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
203
2
0
16 May 2025
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
Julija Zavadlav
AI4ClAI4CE
155
5
0
31 May 2024
Accelerated Simulations of Molecular Systems through Learning of their
  Effective Dynamics
Accelerated Simulations of Molecular Systems through Learning of their Effective Dynamics
Pantelis R. Vlachas
Julija Zavadlav
M. Praprotnik
Petros Koumoutsakos
AI4CE
54
3
0
17 Feb 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
72
61
0
27 Jan 2021
TorchMD: A deep learning framework for molecular simulations
TorchMD: A deep learning framework for molecular simulations
Stefan Doerr
Maciej Majewski
Adria Pérez
Andreas Krämer
C. Clementi
Frank Noe
T. Giorgino
Gianni De Fabritiis
AI4CE
135
173
0
22 Dec 2020
Fast and Uncertainty-Aware Directional Message Passing for
  Non-Equilibrium Molecules
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
79
324
0
28 Nov 2020
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
98
160
0
22 Jul 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
73
217
0
15 Jul 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
127
881
0
06 Mar 2020
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
183
49
0
27 Feb 2020
Learning to Control PDEs with Differentiable Physics
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CEPINN
75
189
0
21 Jan 2020
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
75
664
0
07 Nov 2019
DiffTaichi: Differentiable Programming for Physical Simulation
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
65
388
0
01 Oct 2019
A Differentiable Programming System to Bridge Machine Learning and
  Scientific Computing
A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
Mike Innes
Alan Edelman
Keno Fischer
Chris Rackauckas
Elliot Saba
Viral B. Shah
Will Tebbutt
PINN
57
184
0
17 Jul 2019
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
38
405
0
04 Dec 2018
Active Learning of Uniformly Accurate Inter-atomic Potentials for
  Materials Simulation
Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation
Linfeng Zhang
De-Ye Lin
Han Wang
R. Car
E. Weinan
59
336
0
28 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
434
5,157
0
19 Jun 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,086
0
26 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
A Differentiable Physics Engine for Deep Learning in Robotics
A Differentiable Physics Engine for Deep Learning in Robotics
Jonas Degrave
Michiel Hermans
J. Dambre
Francis Wyffels
PINNAI4CE
84
231
0
05 Nov 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINNAI4CEODL
168
2,816
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1