ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00942
  4. Cited By
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
v1v2 (latest)

JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data

2 June 2021
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
ArXiv (abs)PDFHTML

Papers citing "JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data"

13 / 13 papers shown
Title
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
547
42,639
0
03 Dec 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
68
97
0
27 Sep 2019
Tabular Benchmarks for Joint Architecture and Hyperparameter
  Optimization
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Aaron Klein
Frank Hutter
43
93
0
13 May 2019
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian
  Optimization
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization
Michael Volpp
Lukas P. Frohlich
Kirsten Fischer
Andreas Doerr
Stefan Falkner
Frank Hutter
Christian Daniel
92
85
0
04 Apr 2019
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
113
1,797
0
08 Jul 2018
Dealing with Integer-valued Variables in Bayesian Optimization with
  Gaussian Processes
Dealing with Integer-valued Variables in Bayesian Optimization with Gaussian Processes
E.C. Garrido-Merchán
Daniel Hernández-Lobato
114
232
0
12 Jun 2017
Warm Starting Bayesian Optimization
Warm Starting Bayesian Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
96
61
0
11 Aug 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
76
552
0
23 May 2016
The CMA Evolution Strategy: A Tutorial
The CMA Evolution Strategy: A Tutorial
N. Hansen
74
1,378
0
04 Apr 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
232
2,336
0
21 Mar 2016
Multi-fidelity Gaussian Process Bandit Optimisation
Multi-fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
Gautam Dasarathy
Junier B. Oliva
J. Schneider
Barnabás Póczós
75
77
0
20 Mar 2016
Scalable Bayesian Optimization Using Deep Neural Networks
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDLUQCV
95
1,045
0
19 Feb 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
170
274
0
24 Feb 2014
1