Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.00651
Cited By
v1
v2
v3
v4
v5 (latest)
Asymptotics of representation learning in finite Bayesian neural networks
1 June 2021
Jacob A. Zavatone-Veth
Abdulkadir Canatar
Benjamin S. Ruben
Cengiz Pehlevan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Asymptotics of representation learning in finite Bayesian neural networks"
19 / 19 papers shown
Title
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
93
1
0
26 Oct 2023
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
Blake Bordelon
Lorenzo Noci
Mufan Li
Boris Hanin
Cengiz Pehlevan
126
27
0
28 Sep 2023
A theory of data variability in Neural Network Bayesian inference
Javed Lindner
David Dahmen
Michael Krämer
M. Helias
BDL
83
3
0
31 Jul 2023
Neural Network Field Theories: Non-Gaussianity, Actions, and Locality
M. Demirtaş
James Halverson
Anindita Maiti
M. Schwartz
Keegan Stoner
AI4CE
75
10
0
06 Jul 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
117
7
0
03 May 2023
Learning curves for deep structured Gaussian feature models
Jacob A. Zavatone-Veth
Cengiz Pehlevan
MLT
100
11
0
01 Mar 2023
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
Cengiz Pehlevan
MLT
AI4CE
91
6
0
26 Jan 2023
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
148
10
0
25 Oct 2022
The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
107
39
0
06 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
104
85
0
19 May 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
139
28
0
01 Mar 2022
On neural network kernels and the storage capacity problem
Jacob A. Zavatone-Veth
Cengiz Pehlevan
63
6
0
12 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
84
0
0
03 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
113
55
0
31 Dec 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
Cengiz Pehlevan
BDL
UQCV
MDE
106
11
0
23 Nov 2021
The edge of chaos: quantum field theory and deep neural networks
Kevin T. Grosvenor
R. Jefferson
90
22
0
27 Sep 2021
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
101
11
0
30 Aug 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
131
116
0
18 Mar 2021
Neural Networks and Quantum Field Theory
James Halverson
Anindita Maiti
Keegan Stoner
117
78
0
19 Aug 2020
1