Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.00651
Cited By
Asymptotics of representation learning in finite Bayesian neural networks
1 June 2021
Jacob A. Zavatone-Veth
Abdulkadir Canatar
Benjamin S. Ruben
Cengiz Pehlevan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Asymptotics of representation learning in finite Bayesian neural networks"
20 / 20 papers shown
Title
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
43
1
0
26 Oct 2023
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
Blake Bordelon
Lorenzo Noci
Mufan Li
Boris Hanin
Cengiz Pehlevan
35
22
0
28 Sep 2023
A theory of data variability in Neural Network Bayesian inference
Javed Lindner
David Dahmen
Michael Krämer
M. Helias
BDL
32
1
0
31 Jul 2023
Neural Network Field Theories: Non-Gaussianity, Actions, and Locality
M. Demirtaş
James Halverson
Anindita Maiti
M. Schwartz
Keegan Stoner
AI4CE
23
10
0
06 Jul 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
60
7
0
03 May 2023
Learning curves for deep structured Gaussian feature models
Jacob A. Zavatone-Veth
Cengiz Pehlevan
MLT
30
11
0
01 Mar 2023
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
Cengiz Pehlevan
MLT
AI4CE
30
6
0
26 Jan 2023
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
54
8
0
25 Oct 2022
The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
53
37
0
06 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
45
77
0
19 May 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
30
27
0
01 Mar 2022
On neural network kernels and the storage capacity problem
Jacob A. Zavatone-Veth
Cengiz Pehlevan
11
6
0
12 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
46
0
0
03 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
40
51
0
31 Dec 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
Cengiz Pehlevan
BDL
UQCV
MDE
41
9
0
23 Nov 2021
The edge of chaos: quantum field theory and deep neural networks
Kevin T. Grosvenor
R. Jefferson
40
22
0
27 Sep 2021
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
32
10
0
30 Aug 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
35
110
0
18 Mar 2021
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
1