ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.15078
  4. Cited By
Can Attention Enable MLPs To Catch Up With CNNs?

Can Attention Enable MLPs To Catch Up With CNNs?

31 May 2021
Meng-Hao Guo
Zheng-Ning Liu
Tai-Jiang Mu
Dun Liang
Ralph Robert Martin
Shimin Hu
    AAML
ArXivPDFHTML

Papers citing "Can Attention Enable MLPs To Catch Up With CNNs?"

6 / 6 papers shown
Title
Efficient High-Resolution Deep Learning: A Survey
Efficient High-Resolution Deep Learning: A Survey
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
MedIm
21
19
0
26 Jul 2022
Visual Attention Network
Visual Attention Network
Meng-Hao Guo
Chengrou Lu
Zheng-Ning Liu
Ming-Ming Cheng
Shiyong Hu
ViT
VLM
24
637
0
20 Feb 2022
Continual Transformers: Redundancy-Free Attention for Online Inference
Continual Transformers: Redundancy-Free Attention for Online Inference
Lukas Hedegaard
Arian Bakhtiarnia
Alexandros Iosifidis
CLL
27
11
0
17 Jan 2022
Are we ready for a new paradigm shift? A Survey on Visual Deep MLP
Are we ready for a new paradigm shift? A Survey on Visual Deep MLP
Ruiyang Liu
Hai-Tao Zheng
Li Tao
Dun Liang
Haitao Zheng
85
97
0
07 Nov 2021
Multi-Exit Vision Transformer for Dynamic Inference
Multi-Exit Vision Transformer for Dynamic Inference
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
33
26
0
29 Jun 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
274
2,603
0
04 May 2021
1