ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14737
  4. Cited By
Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
  Segmentation

Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation

31 May 2021
Jin-Hwa Kim
Do-Hyeong Kim
Saehoon Yi
Taehoon Lee
ArXiv (abs)PDFHTML

Papers citing "Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation"

20 / 20 papers shown
Title
Mixed supervision for surface-defect detection: from weakly to fully
  supervised learning
Mixed supervision for surface-defect detection: from weakly to fully supervised learning
Jakob Bozic
Domen Tabernik
D. Skočaj
54
253
0
13 Apr 2021
One-Class Classification: A Survey
One-Class Classification: A Survey
Pramuditha Perera
Poojan Oza
Vishal M. Patel
89
113
0
08 Jan 2021
Multiresolution Knowledge Distillation for Anomaly Detection
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
129
442
0
22 Nov 2020
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
843
0
17 Nov 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
57
199
0
03 Jul 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
153
385
0
29 Jun 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
131
240
0
28 May 2020
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
Niv Cohen
Yedid Hoshen
81
476
0
05 May 2020
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
81
665
0
06 Nov 2019
Segmentation-Based Deep-Learning Approach for Surface-Defect Detection
Segmentation-Based Deep-Learning Approach for Surface-Defect Detection
Domen Tabernik
Samo Sela
J. Skvarc
D. Skočaj
49
695
0
20 Mar 2019
Improving Unsupervised Defect Segmentation by Applying Structural
  Similarity to Autoencoders
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
67
668
0
05 Jul 2018
Latent Space Autoregression for Novelty Detection
Latent Space Autoregression for Novelty Detection
Davide Abati
Angelo Porrello
Simone Calderara
Rita Cucchiara
113
435
0
04 Jul 2018
Future Frame Prediction for Anomaly Detection -- A New Baseline
Future Frame Prediction for Anomaly Detection -- A New Baseline
Wen Liu
Weixin Luo
Dongze Lian
Shenghua Gao
3DH
173
1,078
0
28 Dec 2017
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for
  Deep Learning
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning
José Lezama
Qiang Qiu
Pablo Musé
Guillermo Sapiro
67
78
0
05 Dec 2017
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedImGAN
108
2,231
0
17 Mar 2017
The Unreasonable Effectiveness of Structured Random Orthogonal
  Embeddings
The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings
K. Choromanski
Mark Rowland
Adrian Weller
84
85
0
02 Mar 2017
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
266
14,018
0
19 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,723
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,328
0
11 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
1