ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14655
  4. Cited By
Informing Geometric Deep Learning with Electronic Interactions to
  Accelerate Quantum Chemistry

Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry

31 May 2021
Zhuoran Qiao
Anders S. Christensen
Matthew Welborn
F. Manby
Anima Anandkumar
Thomas F. Miller
ArXivPDFHTML

Papers citing "Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry"

11 / 11 papers shown
Title
ELECTRA: A Cartesian Network for 3D Charge Density Prediction with Floating Orbitals
ELECTRA: A Cartesian Network for 3D Charge Density Prediction with Floating Orbitals
Jonas Elsborg
Luca Thiede
Alán Aspuru-Guzik
Tejs Vegge
Arghya Bhowmik
54
0
0
11 Mar 2025
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
71
6
0
29 May 2024
FeNNol: an Efficient and Flexible Library for Building
  Force-field-enhanced Neural Network Potentials
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
63
8
0
02 May 2024
High Accuracy Uncertainty-Aware Interatomic Force Modeling with
  Equivariant Bayesian Neural Networks
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
54
3
0
05 Apr 2023
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
27
45
0
17 Nov 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
52
23
0
12 Sep 2022
A smooth basis for atomistic machine learning
A smooth basis for atomistic machine learning
Filippo Bigi
Kevin K. Huguenin-Dumittan
Michele Ceriotti
D. Manolopoulos
35
6
0
05 Sep 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian
  Process Regression with Derivatives in Molecular-orbital-based Machine
  Learning
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
40
2
0
31 May 2022
Equivariant graph neural networks for fast electron density estimation
  of molecules, liquids, and solids
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
18
36
0
01 Dec 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
180
1,128
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
259
1,253
0
08 Jan 2021
1