Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.14301
Cited By
A Theory of Neural Tangent Kernel Alignment and Its Influence on Training
29 May 2021
H. Shan
Blake Bordelon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Theory of Neural Tangent Kernel Alignment and Its Influence on Training"
10 / 10 papers shown
Title
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
395
3
0
16 Apr 2025
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
85
8
0
08 Sep 2023
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
66
35
0
17 Mar 2022
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
56
79
0
29 Oct 2021
The Principles of Deep Learning Theory
Daniel A. Roberts
Sho Yaida
Boris Hanin
FaML
PINN
GNN
34
245
0
18 Jun 2021
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
89
187
0
28 Oct 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
76
188
0
24 Jun 2020
On the asymptotics of wide networks with polynomial activations
Kyle Aitken
Guy Gur-Ari
18
23
0
11 Jun 2020
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
63
113
0
24 Jul 2019
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
125
1,830
0
20 Dec 2013
1