Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.13841
Cited By
A General Taylor Framework for Unifying and Revisiting Attribution Methods
28 May 2021
Huiqi Deng
Na Zou
Mengnan Du
Weifu Chen
Guo-Can Feng
Xia Hu
TDI
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A General Taylor Framework for Unifying and Revisiting Attribution Methods"
16 / 16 papers shown
Title
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
101
82
0
17 Mar 2020
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
45
81
0
25 Jun 2019
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
75
1,088
0
31 Jul 2018
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
Weili Nie
Yang Zhang
Ankit B. Patel
FAtt
118
151
0
18 May 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
276
2,257
0
24 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
199
2,221
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
807
21,760
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
164
3,865
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
165
5,968
0
04 Mar 2017
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
129
707
0
15 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
246
19,929
0
07 Oct 2016
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
80
786
0
05 May 2016
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
733
0
08 Dec 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
216
4,665
0
21 Dec 2014
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
443
15,861
0
12 Nov 2013
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
122
1,102
0
06 Dec 2009
1