Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.13271
Cited By
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression
27 May 2021
Nicola Bastianello
Andrea Simonetto
E. Dall’Anese
Re-assign community
ArXiv
PDF
HTML
Papers citing
"OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression"
22 / 22 papers shown
Title
A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions
Andrea Testa
Guido Carnevale
G. Notarstefano
65
11
0
08 Sep 2023
Learning equilibria with personalized incentives in a class of nonmonotone games
F. Fabiani
Andrea Simonetto
Paul Goulart
53
11
0
06 Nov 2021
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
58
13
0
21 Jul 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
137
231
0
23 Mar 2021
Unifying Lower Bounds on Prediction Dimension of Consistent Convex Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
65
4
0
16 Feb 2021
Regret minimization in stochastic non-convex learning via a proximal-gradient approach
Nadav Hallak
P. Mertikopoulos
Volkan Cevher
19
20
0
13 Oct 2020
Regularization by Denoising via Fixed-Point Projection (RED-PRO)
Regev Cohen
Michael Elad
P. Milanfar
47
106
0
01 Aug 2020
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
63
526
0
12 May 2020
Socially-Aware Robot Planning via Bandit Human Feedback
Xusheng Luo
Yan Zhang
Michael M. Zavlanos
40
17
0
02 Mar 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
41
55
0
13 Feb 2020
Anderson Acceleration of Proximal Gradient Methods
Vien V. Mai
M. Johansson
32
36
0
18 Oct 2019
Optimization and Learning with Information Streams: Time-varying Algorithms and Applications
E. Dall’Anese
Andrea Simonetto
Stephen Becker
Liam Madden
70
69
0
17 Oct 2019
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss
Jose H. Blanchet
Peter Glynn
Jun Yan
Zhengqing Zhou
25
31
0
29 May 2019
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport
François-Pierre Paty
Alexandre d’Aspremont
Marco Cuturi
OT
54
33
0
26 May 2019
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
66
373
0
17 Mar 2018
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
61
357
0
11 Apr 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
32
127
0
24 Mar 2017
A Computational Framework for Multivariate Convex Regression and its Variants
Rahul Mazumder
Arkopal Choudhury
G. Iyengar
B. Sen
80
82
0
28 Sep 2015
Convex Calibration Dimension for Multiclass Loss Matrices
H. G. Ramaswamy
S. Agarwal
43
47
0
12 Aug 2014
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
127
430
0
20 Jul 2013
Sparse Recovery of Streaming Signals Using L1-Homotopy
M. Salman Asif
Justin Romberg
65
155
0
14 Jun 2013
Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function
E. Seijo
B. Sen
78
165
0
24 Mar 2010
1