ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13271
  4. Cited By
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator
  Regression

OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression

27 May 2021
Nicola Bastianello
Andrea Simonetto
E. Dall’Anese
ArXivPDFHTML

Papers citing "OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression"

22 / 22 papers shown
Title
A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions
A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions
Andrea Testa
Guido Carnevale
G. Notarstefano
65
11
0
08 Sep 2023
Learning equilibria with personalized incentives in a class of
  nonmonotone games
Learning equilibria with personalized incentives in a class of nonmonotone games
F. Fabiani
Andrea Simonetto
Paul Goulart
53
11
0
06 Nov 2021
Neural Fixed-Point Acceleration for Convex Optimization
Neural Fixed-Point Acceleration for Convex Optimization
Shobha Venkataraman
Brandon Amos
58
13
0
21 Jul 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
137
231
0
23 Mar 2021
Unifying Lower Bounds on Prediction Dimension of Consistent Convex
  Surrogates
Unifying Lower Bounds on Prediction Dimension of Consistent Convex Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
65
4
0
16 Feb 2021
Regret minimization in stochastic non-convex learning via a
  proximal-gradient approach
Regret minimization in stochastic non-convex learning via a proximal-gradient approach
Nadav Hallak
P. Mertikopoulos
Volkan Cevher
19
20
0
13 Oct 2020
Regularization by Denoising via Fixed-Point Projection (RED-PRO)
Regularization by Denoising via Fixed-Point Projection (RED-PRO)
Regev Cohen
Michael Elad
P. Milanfar
47
106
0
01 Aug 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
63
526
0
12 May 2020
Socially-Aware Robot Planning via Bandit Human Feedback
Socially-Aware Robot Planning via Bandit Human Feedback
Xusheng Luo
Yan Zhang
Michael M. Zavlanos
40
17
0
02 Mar 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth
  Non-Convex Optimization
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
41
55
0
13 Feb 2020
Anderson Acceleration of Proximal Gradient Methods
Anderson Acceleration of Proximal Gradient Methods
Vien V. Mai
M. Johansson
32
36
0
18 Oct 2019
Optimization and Learning with Information Streams: Time-varying
  Algorithms and Applications
Optimization and Learning with Information Streams: Time-varying Algorithms and Applications
E. Dall’Anese
Andrea Simonetto
Stephen Becker
Liam Madden
70
69
0
17 Oct 2019
Multivariate Distributionally Robust Convex Regression under Absolute
  Error Loss
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss
Jose H. Blanchet
Peter Glynn
Jun Yan
Zhengqing Zhou
25
31
0
29 May 2019
Regularity as Regularization: Smooth and Strongly Convex Brenier
  Potentials in Optimal Transport
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport
François-Pierre Paty
Alexandre d’Aspremont
Marco Cuturi
OT
54
33
0
26 May 2019
Stochastic model-based minimization of weakly convex functions
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
66
373
0
17 Mar 2018
Learning Proximal Operators: Using Denoising Networks for Regularizing
  Inverse Imaging Problems
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
61
357
0
11 Apr 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
32
127
0
24 Mar 2017
A Computational Framework for Multivariate Convex Regression and its
  Variants
A Computational Framework for Multivariate Convex Regression and its Variants
Rahul Mazumder
Arkopal Choudhury
G. Iyengar
B. Sen
80
82
0
28 Sep 2015
Convex Calibration Dimension for Multiclass Loss Matrices
Convex Calibration Dimension for Multiclass Loss Matrices
H. G. Ramaswamy
S. Agarwal
43
47
0
12 Aug 2014
Non-stationary Stochastic Optimization
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
127
430
0
20 Jul 2013
Sparse Recovery of Streaming Signals Using L1-Homotopy
Sparse Recovery of Streaming Signals Using L1-Homotopy
M. Salman Asif
Justin Romberg
65
155
0
14 Jun 2013
Nonparametric Least Squares Estimation of a Multivariate Convex
  Regression Function
Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function
E. Seijo
B. Sen
78
165
0
24 Mar 2010
1