ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13011
  4. Cited By
Neural Network Training Using $\ell_1$-Regularization and Bi-fidelity
  Data

Neural Network Training Using ℓ1\ell_1ℓ1​-Regularization and Bi-fidelity Data

27 May 2021
Subhayan De
Alireza Doostan
ArXivPDFHTML

Papers citing "Neural Network Training Using $\ell_1$-Regularization and Bi-fidelity Data"

7 / 7 papers shown
Title
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
39
0
0
30 Apr 2025
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Nuojin Cheng
Osman Asif Malik
Subhayan De
Stephen Becker
Alireza Doostan
27
9
0
25 May 2023
Multi-fidelity wavelet neural operator with application to uncertainty
  quantification
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
30
12
0
11 Aug 2022
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using
  DeepONets
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
23
37
0
03 Apr 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
Deep Neural Networks Are Effective At Learning High-Dimensional
  Hilbert-Valued Functions From Limited Data
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
34
29
0
11 Dec 2020
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1