ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11872
  4. Cited By
Empirical Error Modeling Improves Robustness of Noisy Neural Sequence
  Labeling

Empirical Error Modeling Improves Robustness of Noisy Neural Sequence Labeling

25 May 2021
Marcin Namysl
Sven Behnke
Joachim Kohler
    NoLa
ArXivPDFHTML

Papers citing "Empirical Error Modeling Improves Robustness of Noisy Neural Sequence Labeling"

5 / 5 papers shown
Title
NL-Augmenter: A Framework for Task-Sensitive Natural Language
  Augmentation
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh D. Dhole
Varun Gangal
Sebastian Gehrmann
Aadesh Gupta
Zhenhao Li
...
Tianbao Xie
Usama Yaseen
Michael A. Yee
Jing Zhang
Yue Zhang
174
86
0
06 Dec 2021
Robust Encodings: A Framework for Combating Adversarial Typos
Robust Encodings: A Framework for Combating Adversarial Typos
Erik Jones
Robin Jia
Aditi Raghunathan
Percy Liang
AAML
142
102
0
04 May 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
316
7,020
0
20 Apr 2018
OpenNMT: Open-Source Toolkit for Neural Machine Translation
OpenNMT: Open-Source Toolkit for Neural Machine Translation
Guillaume Klein
Yoon Kim
Yuntian Deng
Jean Senellart
Alexander M. Rush
273
1,897
0
10 Jan 2017
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
223
7,937
0
17 Aug 2015
1