ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11417
  4. Cited By
Skew Orthogonal Convolutions

Skew Orthogonal Convolutions

24 May 2021
Sahil Singla
S. Feizi
ArXivPDFHTML

Papers citing "Skew Orthogonal Convolutions"

18 / 18 papers shown
Title
Compositional Curvature Bounds for Deep Neural Networks
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
42
0
0
07 Jun 2024
Graph Unitary Message Passing
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
37
2
0
17 Mar 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
36
5
0
02 Feb 2024
1-Lipschitz Neural Networks are more expressive with N-Activations
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Certifying LLM Safety against Adversarial Prompting
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
S. Feizi
Himabindu Lakkaraju
AAML
27
165
0
06 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
26
9
0
02 Jun 2023
A Unified Algebraic Perspective on Lipschitz Neural Networks
A Unified Algebraic Perspective on Lipschitz Neural Networks
Alexandre Araujo
Aaron J. Havens
Blaise Delattre
A. Allauzen
Bin Hu
AAML
36
52
0
06 Mar 2023
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Yue Song
N. Sebe
Wei Wang
33
6
0
11 Dec 2022
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz
  Networks
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
32
35
0
05 Aug 2022
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Yue Song
N. Sebe
Wei Wang
19
8
0
05 Jul 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical
  Analysis
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
34
3
0
03 Jun 2022
projUNN: efficient method for training deep networks with unitary
  matrices
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
43
32
0
10 Mar 2022
Mutual Adversarial Training: Learning together is better than going
  alone
Mutual Adversarial Training: Learning together is better than going alone
Jiang-Long Liu
Chun Pong Lau
Hossein Souri
S. Feizi
Ramalingam Chellappa
OOD
AAML
43
24
0
09 Dec 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural
  Networks
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Policy Smoothing for Provably Robust Reinforcement Learning
Policy Smoothing for Provably Robust Reinforcement Learning
Aounon Kumar
Alexander Levine
S. Feizi
AAML
20
55
0
21 Jun 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
242
348
0
14 Jun 2018
1