ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11060
14
1

High-level camera-LiDAR fusion for 3D object detection with machine learning

24 May 2021
Gustavo Salazar-Gomez
Miguel A. Saavedra-Ruiz
Victor A. Romero-Cano
    3DPC
ArXivPDFHTML
Abstract

This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving. Our framework uses a Machine Learning (ML) pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform. It uses frustum region proposals generated by State-Of-The-Art (SOTA) 2D object detectors to segment LiDAR point clouds into point clusters which represent potentially individual objects. We evaluate the performance of classical ML algorithms as part of an holistic pipeline for estimating the parameters of 3D bounding boxes which surround the vehicles around the moving platform. Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.

View on arXiv
Comments on this paper