ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.10305
  4. Cited By
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification

Correlated Input-Dependent Label Noise in Large-Scale Image Classification

19 May 2021
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
    NoLa
ArXivPDFHTML

Papers citing "Correlated Input-Dependent Label Noise in Large-Scale Image Classification"

16 / 16 papers shown
Title
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
Kumar Manas
Christian Schlauch
Adrian Paschke
Christian Wirth
Nadja Klein
40
0
0
17 Apr 2025
On the Generalization of Representation Uncertainty in Earth Observation
Spyros Kondylatos
N. Bountos
Dimitrios Michail
Xiao Xiang Zhu
Gustau Camps-Valls
Ioannis Papoutsis
74
1
0
10 Mar 2025
FPR Estimation for Fraud Detection in the Presence of Class-Conditional
  Label Noise
FPR Estimation for Fraud Detection in the Presence of Class-Conditional Label Noise
Justin Tittelfitz
29
0
0
04 Aug 2023
Improving Image Recognition by Retrieving from Web-Scale Image-Text Data
Improving Image Recognition by Retrieving from Web-Scale Image-Text Data
Ahmet Iscen
Alireza Fathi
Cordelia Schmid
VLM
3DV
33
25
0
11 Apr 2023
Scaling Vision Transformers to 22 Billion Parameters
Scaling Vision Transformers to 22 Billion Parameters
Mostafa Dehghani
Josip Djolonga
Basil Mustafa
Piotr Padlewski
Jonathan Heek
...
Mario Luvcić
Xiaohua Zhai
Daniel Keysers
Jeremiah Harmsen
N. Houlsby
MLLM
61
570
0
10 Feb 2023
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao W. Wang
C. Yuan
21
3
0
11 Oct 2022
Is one annotation enough? A data-centric image classification benchmark
  for noisy and ambiguous label estimation
Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation
Lars Schmarje
Vasco Grossmann
Claudius Zelenka
S. Dippel
R. Kiko
...
M. Pastell
J. Stracke
A. Valros
N. Volkmann
Reinahrd Koch
40
34
0
13 Jul 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
Transfer and Marginalize: Explaining Away Label Noise with Privileged
  Information
Transfer and Marginalize: Explaining Away Label Noise with Privileged Information
Mark Collier
Rodolphe Jenatton
Efi Kokiopoulou
Jesse Berent
25
13
0
18 Feb 2022
Learning with Neighbor Consistency for Noisy Labels
Learning with Neighbor Consistency for Noisy Labels
Ahmet Iscen
Jack Valmadre
Anurag Arnab
Cordelia Schmid
NoLa
30
75
0
04 Feb 2022
Open-Vocabulary Instance Segmentation via Robust Cross-Modal
  Pseudo-Labeling
Open-Vocabulary Instance Segmentation via Robust Cross-Modal Pseudo-Labeling
Dat T. Huynh
Jason Kuen
Zhe-nan Lin
Jiuxiang Gu
Ehsan Elhamifar
ISeg
VLM
22
83
0
24 Nov 2021
Constrained Instance and Class Reweighting for Robust Learning under
  Label Noise
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
29
19
0
09 Nov 2021
Life is not black and white -- Combining Semi-Supervised Learning with
  fuzzy labels
Life is not black and white -- Combining Semi-Supervised Learning with fuzzy labels
Lars Schmarje
Reinhard Koch
32
2
0
13 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1