ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.07168
  4. Cited By
Cohort Shapley value for algorithmic fairness

Cohort Shapley value for algorithmic fairness

15 May 2021
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
ArXivPDFHTML

Papers citing "Cohort Shapley value for algorithmic fairness"

11 / 11 papers shown
Title
Achieving Fairness in Predictive Process Analytics via Adversarial
  Learning (Extended Version)
Achieving Fairness in Predictive Process Analytics via Adversarial Learning (Extended Version)
Massimiliano de Leoni
Alessandro Padella
FaML
24
1
0
03 Oct 2024
Fair Feature Importance Scores for Interpreting Tree-Based Methods and
  Surrogates
Fair Feature Importance Scores for Interpreting Tree-Based Methods and Surrogates
Camille Olivia Little
Debolina Halder Lina
Genevera I. Allen
18
1
0
06 Oct 2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
  Models
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
37
11
0
24 May 2023
Uncertainty Quantification for Local Model Explanations Without Model
  Access
Uncertainty Quantification for Local Model Explanations Without Model Access
Surin Ahn
J. Grana
Yafet Tamene
Kristian Holsheimer
FAtt
26
0
0
13 Jan 2023
Model free variable importance for high dimensional data
Model free variable importance for high dimensional data
Naofumi Hama
Masayoshi Mase
Art B. Owen
21
1
0
15 Nov 2022
Understanding Instance-Level Impact of Fairness Constraints
Understanding Instance-Level Impact of Fairness Constraints
Jialu Wang
X. Wang
Yang Liu
TDI
FaML
20
33
0
30 Jun 2022
Confounder Analysis in Measuring Representation in Product Funnels
Confounder Analysis in Measuring Representation in Product Funnels
Jilei Yang
Wentao Su
CML
14
0
0
07 Jun 2022
Variable importance without impossible data
Variable importance without impossible data
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
11
7
0
31 May 2022
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
21
15
0
18 Oct 2021
Information Theoretic Measures for Fairness-aware Feature Selection
Information Theoretic Measures for Fairness-aware Feature Selection
S. Khodadadian
M. Nafea
AmirEmad Ghassami
Negar Kiyavash
14
8
0
01 Jun 2021
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
1