ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.05806
  4. Cited By
High-Dimensional Experimental Design and Kernel Bandits

High-Dimensional Experimental Design and Kernel Bandits

12 May 2021
Romain Camilleri
Julian Katz-Samuels
Kevin G. Jamieson
ArXivPDFHTML

Papers citing "High-Dimensional Experimental Design and Kernel Bandits"

18 / 18 papers shown
Title
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
83
1
0
10 Feb 2025
Enhancing Preference-based Linear Bandits via Human Response Time
Enhancing Preference-based Linear Bandits via Human Response Time
Shen Li
Yuyang Zhang
Zhaolin Ren
Claire Liang
Na Li
J. Shah
42
0
0
03 Jan 2025
Lower Bounds for Time-Varying Kernelized Bandits
Lower Bounds for Time-Varying Kernelized Bandits
Xu Cai
Jonathan Scarlett
41
0
0
22 Oct 2024
Online Network Source Optimization with Graph-Kernel MAB
Online Network Source Optimization with Graph-Kernel MAB
Laura Toni
P. Frossard
31
1
0
07 Jul 2023
(Private) Kernelized Bandits with Distributed Biased Feedback
(Private) Kernelized Bandits with Distributed Biased Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
35
5
0
28 Jan 2023
PopArt: Efficient Sparse Regression and Experimental Design for Optimal
  Sparse Linear Bandits
PopArt: Efficient Sparse Regression and Experimental Design for Optimal Sparse Linear Bandits
Kyoungseok Jang
Chicheng Zhang
Kwang-Sung Jun
40
14
0
25 Oct 2022
Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback
Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback
Adhyyan Narang
Omid Sadeghi
Lillian J. Ratliff
Maryam Fazel
J. Bilmes
OffRL
18
1
0
07 Jul 2022
Active Learning with Safety Constraints
Active Learning with Safety Constraints
Romain Camilleri
Andrew Wagenmaker
Jamie Morgenstern
Lalit P. Jain
Kevin G. Jamieson
30
12
0
22 Jun 2022
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
  Spaces
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
Mojmír Mutný
Andreas Krause
35
11
0
26 May 2022
Instance-Dependent Regret Analysis of Kernelized Bandits
Instance-Dependent Regret Analysis of Kernelized Bandits
S. Shekhar
T. Javidi
29
3
0
12 Mar 2022
Efficient Kernel UCB for Contextual Bandits
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
29
3
0
11 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-Shan Shiu
A. Bernacchia
33
18
0
08 Feb 2022
An Experimental Design Approach for Regret Minimization in Logistic
  Bandits
An Experimental Design Approach for Regret Minimization in Logistic Bandits
Blake Mason
Kwang-Sung Jun
Lalit P. Jain
29
10
0
04 Feb 2022
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
43
0
09 Nov 2021
Nearly Optimal Algorithms for Level Set Estimation
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin G. Jamieson
Robert D. Nowak
Lalit P. Jain
30
22
0
02 Nov 2021
Collaborative Pure Exploration in Kernel Bandit
Collaborative Pure Exploration in Kernel Bandit
Yihan Du
Wei Chen
Yuko Kuroki
Longbo Huang
45
10
0
29 Oct 2021
Near Instance Optimal Model Selection for Pure Exploration Linear
  Bandits
Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
Yinglun Zhu
Julian Katz-Samuels
Robert D. Nowak
40
6
0
10 Sep 2021
Pure Exploration in Kernel and Neural Bandits
Pure Exploration in Kernel and Neural Bandits
Yinglun Zhu
Dongruo Zhou
Ruoxi Jiang
Quanquan Gu
Rebecca Willett
Robert D. Nowak
13
15
0
22 Jun 2021
1