ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.05001
  4. Cited By
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning
  Convergence Analysis

FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis

11 May 2021
Baihe Huang
Xiaoxiao Li
Zhao Song
Xin Yang
    FedML
ArXivPDFHTML

Papers citing "FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Convergence Analysis"

12 / 12 papers shown
Title
Bypass Exponential Time Preprocessing: Fast Neural Network Training via
  Weight-Data Correlation Preprocessing
Bypass Exponential Time Preprocessing: Fast Neural Network Training via Weight-Data Correlation Preprocessing
Josh Alman
Jiehao Liang
Zhao Song
Ruizhe Zhang
Danyang Zhuo
77
31
0
25 Nov 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
32
75
0
27 May 2022
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic
  Time
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao Song
Licheng Zhang
Ruizhe Zhang
23
64
0
14 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
30
16
0
09 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly
  Masked Neurons
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
43
16
0
05 Dec 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao Song
Shuo Yang
Ruizhe Zhang
38
49
0
09 Oct 2021
Federated Learning via Plurality Vote
Federated Learning via Plurality Vote
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
24
8
0
06 Oct 2021
Fast Sketching of Polynomial Kernels of Polynomial Degree
Fast Sketching of Polynomial Kernels of Polynomial Degree
Zhao Song
David P. Woodruff
Zheng Yu
Lichen Zhang
18
40
0
21 Aug 2021
FedBN: Federated Learning on Non-IID Features via Local Batch
  Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
787
0
15 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
1