Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.04504
Cited By
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
10 May 2021
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Point Estimates for Deep Gaussian Processes"
11 / 11 papers shown
Title
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Bo-wen Li
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
24
0
0
27 May 2023
Gaussian Process-Gated Hierarchical Mixtures of Experts
Yuhao Liu
Marzieh Ajirak
P. Djuric
MoE
16
1
0
09 Feb 2023
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
182
35
0
20 May 2022
Sharp asymptotics on the compression of two-layer neural networks
Mohammad Hossein Amani
Simone Bombari
Marco Mondelli
Rattana Pukdee
Stefano Rini
MLT
27
0
0
17 May 2022
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
47
4
0
18 Dec 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDL
PER
EDL
UQCV
35
21
0
13 Apr 2021
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1