Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.04289
Cited By
Do Concept Bottleneck Models Learn as Intended?
10 May 2021
Andrei Margeloiu
Matthew Ashman
Umang Bhatt
Yanzhi Chen
M. Jamnik
Adrian Weller
SLR
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Do Concept Bottleneck Models Learn as Intended?"
50 / 74 papers shown
Title
Towards Reasonable Concept Bottleneck Models
Nektarios Kalampalikis
Kavya Gupta
Georgi Vitanov
Isabel Valera
LRM
96
0
0
05 Jun 2025
A Comprehensive Survey on the Risks and Limitations of Concept-based Models
Sanchit Sinha
Aidong Zhang
12
0
0
25 May 2025
Learning Concept-Driven Logical Rules for Interpretable and Generalizable Medical Image Classification
Yibo Gao
Hangqi Zhou
Zheyao Gao
Bomin Wang
Shangqi Gao
Sihan Wang
Xiahai Zhuang
71
0
0
20 May 2025
Discovering Fine-Grained Visual-Concept Relations by Disentangled Optimal Transport Concept Bottleneck Models
Yan Xie
Zequn Zeng
Hao Zhang
Yucheng Ding
Yun Wang
Zhengjue Wang
Bo Chen
Hongwei Liu
OT
88
1
0
12 May 2025
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
520
1
0
28 Apr 2025
Leakage and Interpretability in Concept-Based Models
Enrico Parisini
Tapabrata Chakraborti
Chris Harbron
Ben D. MacArthur
Christopher R. S. Banerji
138
1
0
18 Apr 2025
Measuring Leakage in Concept-Based Methods: An Information Theoretic Approach
Mikael Makonnen
Moritz Vandenhirtz
Sonia Laguna
Julia E. Vogt
92
3
0
13 Apr 2025
Walking the Web of Concept-Class Relationships in Incrementally Trained Interpretable Models
Susmit Agrawal
Deepika Vemuri
S. Paul
Vineeth N. Balasubramanian
CLL
141
0
0
27 Feb 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
169
5
0
16 Feb 2025
Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
H. Fokkema
T. Erven
Sara Magliacane
149
2
0
10 Feb 2025
Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model
Yuxuan Cai
Xiang Wang
Satoshi Tsutsui
Winnie Pang
Bihan Wen
96
0
0
03 Feb 2025
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance
Divyansh Srivastava
Beatriz Cabrero-Daniel
Christian Berger
VLM
193
15
0
17 Jan 2025
Towards Utilising a Range of Neural Activations for Comprehending Representational Associations
Laura O'Mahony
Nikola S. Nikolov
David JP O'Sullivan
148
0
0
15 Nov 2024
Concept Bottleneck Language Models For protein design
Aya Abdelsalam Ismail
Tuomas Oikarinen
Amy Wang
Julius Adebayo
Samuel Stanton
...
J. Kleinhenz
Allen Goodman
H. C. Bravo
Kyunghyun Cho
Nathan C. Frey
116
6
0
09 Nov 2024
Classification with Conceptual Safeguards
Hailey Joren
Charles Marx
Berk Ustun
62
2
0
07 Nov 2024
Beyond Accuracy: Ensuring Correct Predictions With Correct Rationales
Tang Li
Mengmeng Ma
Xi Peng
107
2
0
31 Oct 2024
Exploiting Interpretable Capabilities with Concept-Enhanced Diffusion and Prototype Networks
Alba Carballo-Castro
Sonia Laguna
Moritz Vandenhirtz
Julia E. Vogt
DiffM
77
1
0
24 Oct 2024
Optimizing importance weighting in the presence of sub-population shifts
Floris Holstege
Bram Wouters
Noud van Giersbergen
C. Diks
88
0
0
18 Oct 2024
Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting
Maxime Kayser
Bayar I. Menzat
Cornelius Emde
Bogdan Bercean
Alex Novak
Abdala Espinosa
B. Papież
Susanne Gaube
Thomas Lukasiewicz
Oana-Maria Camburu
148
5
0
16 Oct 2024
Tree-Based Leakage Inspection and Control in Concept Bottleneck Models
Angelos Ragkousis
Sonali Parbhoo
82
4
0
08 Oct 2024
Concept-Based Explanations in Computer Vision: Where Are We and Where Could We Go?
Jae Hee Lee
Georgii Mikriukov
Gesina Schwalbe
Stefan Wermter
D. Wolter
109
2
0
20 Sep 2024
CoLiDR: Concept Learning using Aggregated Disentangled Representations
Sanchit Sinha
Guangzhi Xiong
Aidong Zhang
102
3
0
27 Jul 2024
Concept Bottleneck Models Without Predefined Concepts
Simon Schrodi
Julian Schur
Max Argus
Thomas Brox
84
12
0
04 Jul 2024
Learning a Clinically-Relevant Concept Bottleneck for Lesion Detection in Breast Ultrasound
Arianna Bunnell
Yannik Glaser
Dustin Valdez
T. Wolfgruber
Aleen Altamirano
Carol Zamora González
Brenda Y. Hernandez
Peter Sadowski
John A. Shepherd
75
0
0
29 Jun 2024
FI-CBL: A Probabilistic Method for Concept-Based Learning with Expert Rules
Lev V. Utkin
A. Konstantinov
Stanislav R. Kirpichenko
106
0
0
28 Jun 2024
Stochastic Concept Bottleneck Models
Moritz Vandenhirtz
Sonia Laguna
Ricards Marcinkevics
Julia E. Vogt
85
12
0
27 Jun 2024
Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
Katherine M. Collins
Najoung Kim
Yonatan Bitton
Verena Rieser
Shayegan Omidshafiei
...
Gang Li
Adrian Weller
Junfeng He
Deepak Ramachandran
Krishnamurthy Dvijotham
EGVM
84
3
0
24 Jun 2024
Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models
Nishad Singhi
Jae Myung Kim
Karsten Roth
Zeynep Akata
78
2
0
02 May 2024
Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
Yuan Zang
Tian Yun
Hao Tan
Trung Bui
Chen Sun
VLM
CoGe
108
10
0
19 Apr 2024
Incremental Residual Concept Bottleneck Models
Chenming Shang
Shiji Zhou
Hengyuan Zhang
Xinzhe Ni
Yujiu Yang
Yuwang Wang
118
18
0
13 Apr 2024
Understanding Multimodal Deep Neural Networks: A Concept Selection View
Chenming Shang
Hengyuan Zhang
Hao Wen
Yujiu Yang
94
5
0
13 Apr 2024
A survey on Concept-based Approaches For Model Improvement
Avani Gupta
P. J. Narayanan
LRM
79
5
0
21 Mar 2024
On the Concept Trustworthiness in Concept Bottleneck Models
Qihan Huang
Mingli Song
Jingwen Hu
Haofei Zhang
Yong Wang
Mingli Song
99
11
0
21 Mar 2024
Incorporating Expert Rules into Neural Networks in the Framework of Concept-Based Learning
A. Konstantinov
Lev V. Utkin
80
4
0
22 Feb 2024
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
125
44
0
16 Feb 2024
Three Pathways to Neurosymbolic Reinforcement Learning with Interpretable Model and Policy Networks
Peter Graf
Patrick Emami
51
2
0
07 Feb 2024
Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features?
Jack Furby
Daniel Cunnington
Dave Braines
Alun D. Preece
89
4
0
01 Feb 2024
Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?
Sonia Laguna
Ricards Marcinkevics
Moritz Vandenhirtz
Julia E. Vogt
131
18
0
24 Jan 2024
DiConStruct: Causal Concept-based Explanations through Black-Box Distillation
Ricardo Moreira
Jacopo Bono
Mário Cardoso
Pedro Saleiro
Mário A. T. Figueiredo
P. Bizarro
CML
117
5
0
16 Jan 2024
Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks
Tanmay Garg
Deepika Vemuri
Vineeth N. Balasubramanian
GAN
79
3
0
09 Jan 2024
Do Concept Bottleneck Models Respect Localities?
Naveen Raman
M. Zarlenga
Juyeon Heo
M. Jamnik
138
8
0
02 Jan 2024
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology
S. Kapse
Pushpak Pati
Srijan Das
Jingwei Zhang
Chao Chen
Maria Vakalopoulou
Joel H. Saltz
Dimitris Samaras
Rajarsi R. Gupta
Prateek Prasanna
92
12
0
22 Dec 2023
Q-SENN: Quantized Self-Explaining Neural Networks
Thomas Norrenbrock
Marco Rudolph
Bodo Rosenhahn
FAtt
AAML
MILM
102
7
0
21 Dec 2023
Concept-based Explainable Artificial Intelligence: A Survey
Eleonora Poeta
Gabriele Ciravegna
Eliana Pastor
Tania Cerquitelli
Elena Baralis
LRM
XAI
108
56
0
20 Dec 2023
Benchmarking and Enhancing Disentanglement in Concept-Residual Models
Renos Zabounidis
Ini Oguntola
Konghao Zhao
Joseph Campbell
Simon Stepputtis
Katia Sycara
61
3
0
30 Nov 2023
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Samira Ebrahimi Kahou
105
28
0
18 Nov 2023
Cross-Modal Conceptualization in Bottleneck Models
Danis Alukaev
S. Kiselev
Ilya Pershin
Bulat Ibragimov
Vladimir Ivanov
Alexey Kornaev
Ivan Titov
78
7
0
23 Oct 2023
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation Learning
Emanuele Marconato
Andrea Passerini
Stefano Teso
95
17
0
14 Sep 2023
Learning to Intervene on Concept Bottlenecks
David Steinmann
Wolfgang Stammer
Felix Friedrich
Kristian Kersting
74
23
0
25 Aug 2023
Evaluating the Stability of Semantic Concept Representations in CNNs for Robust Explainability
Georgii Mikriukov
Gesina Schwalbe
Christian Hellert
Korinna Bade
FAtt
83
9
0
28 Apr 2023
1
2
Next