Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.02939
Cited By
PCE-PINNs: Physics-Informed Neural Networks for Uncertainty Propagation in Ocean Modeling
5 May 2021
Björn Lütjens
Catherine H. Crawford
Mark S. Veillette
Dava Newman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PCE-PINNs: Physics-Informed Neural Networks for Uncertainty Propagation in Ocean Modeling"
6 / 6 papers shown
Title
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Nils Wandel
Stefan Schulz
Reinhard Klein
PINN
AI4CE
53
1
0
10 Oct 2024
Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks
Luca Pegolotti
Martin R. Pfaller
Natalia L. Rubio
Ke Ding
Rita Brugarolas Brufau
Eric F. Darve
Alison L. Marsden
AI4CE
53
31
0
13 Mar 2023
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Björn Lütjens
Catherine H. Crawford
C. Watson
C. Hill
Dava Newman
AI4CE
19
9
0
23 Jul 2022
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
36
46
0
05 Jul 2022
When happy accidents spark creativity: Bringing collaborative speculation to life with generative AI
Ziv Epstein
Hope Schroeder
Dava Newman
19
23
0
01 Jun 2022
Towards Optimally Weighted Physics-Informed Neural Networks in Ocean Modelling
T. Wolff
Hugo Carrillo Lincopi
Luis Martí
Nayat Sánchez-Pi
PINN
AI4CE
16
12
0
16 Jun 2021
1