ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.02522
  4. Cited By
Neural graphical modelling in continuous-time: consistency guarantees
  and algorithms

Neural graphical modelling in continuous-time: consistency guarantees and algorithms

6 May 2021
Alexis Bellot
K. Branson
M. Schaar
    CML
    AI4TS
ArXivPDFHTML

Papers citing "Neural graphical modelling in continuous-time: consistency guarantees and algorithms"

12 / 12 papers shown
Title
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
50
0
0
06 Mar 2025
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
32
0
0
25 Oct 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for
  Spatiotemporal Time Series Imputation
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
32
6
0
18 Mar 2024
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CML
BDL
44
8
0
28 Feb 2024
CausalTime: Realistically Generated Time-series for Benchmarking of
  Causal Discovery
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
30
11
0
03 Oct 2023
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
Yuxiao Cheng
Lianglong Li
Tingxiong Xiao
Zongren Li
Qionghai Dai
J. Suo
K. He
CML
BDL
AI4TS
23
21
0
10 May 2023
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
  Localization
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause Localization
Dongjie Wang
Zhengzhang Chen
Jingchao Ni
Liang Tong
Zheng Wang
Yanjie Fu
Haifeng Chen
AI4CE
11
17
0
03 Feb 2023
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
Yang Sun
Yifan Xie
BDL
CML
31
1
0
28 Jan 2023
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
31
11
0
07 Nov 2022
Adaptive Group Lasso Neural Network Models for Functions of Few
  Variables and Time-Dependent Data
Adaptive Group Lasso Neural Network Models for Functions of Few Variables and Time-Dependent Data
L. Ho
Nicholas Richardson
Giang Tran
10
3
0
24 Aug 2021
From Ordinary Differential Equations to Structural Causal Models: the
  deterministic case
From Ordinary Differential Equations to Structural Causal Models: the deterministic case
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
74
101
0
09 Aug 2014
Autoregressive Process Modeling via the Lasso Procedure
Autoregressive Process Modeling via the Lasso Procedure
Yuval Nardi
Alessandro Rinaldo
62
157
0
08 May 2008
1