Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.02266
Cited By
v1
v2 (latest)
Randomized Stochastic Variance-Reduced Methods for Multi-Task Stochastic Bilevel Optimization
5 May 2021
Zhishuai Guo
Quan Hu
Lijun Zhang
Tianbao Yang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Randomized Stochastic Variance-Reduced Methods for Multi-Task Stochastic Bilevel Optimization"
17 / 17 papers shown
Title
First-Order Methods for Linearly Constrained Bilevel Optimization
Guy Kornowski
Swati Padmanabhan
Kai Wang
Zhe Zhang
S. Sra
122
5
0
18 Jun 2024
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
112
82
0
25 Aug 2020
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
Risheng Liu
Pan Mu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
58
131
0
07 Jun 2020
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
92
56
0
25 Feb 2020
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
84
363
0
05 Dec 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
116
857
0
10 Sep 2019
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
88
225
0
27 Aug 2019
A Stochastic Composite Gradient Method with Incremental Variance Reduction
Junyu Zhang
Lin Xiao
51
68
0
24 Jun 2019
Momentum-Based Variance Reduction in Non-Convex SGD
Ashok Cutkosky
Francesco Orabona
ODL
86
410
0
24 May 2019
Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
ODL
67
14
0
07 Feb 2019
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
101
266
0
25 Oct 2018
Stochastically Controlled Stochastic Gradient for the Convex and Non-convex Composition problem
Liu Liu
Ji Liu
Cho-Jui Hsieh
Dacheng Tao
47
13
0
06 Sep 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
95
579
0
04 Jul 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
179
732
0
13 Jun 2018
Accelerated Method for Stochastic Composition Optimization with Nonsmooth Regularization
Zhouyuan Huo
Bin Gu
Ji Liu
Heng-Chiao Huang
87
51
0
10 Nov 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
171
607
0
01 Mar 2017
Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions
Mengdi Wang
Ethan X. Fang
Han Liu
96
264
0
14 Nov 2014
1