ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.01281
  4. Cited By
Citadel: Protecting Data Privacy and Model Confidentiality for
  Collaborative Learning with SGX

Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX

4 May 2021
Chengliang Zhang
Junzhe Xia
Baichen Yang
Huancheng Puyang
Wei Wang
Ruichuan Chen
Istemi Ekin Akkus
Paarijaat Aditya
Feng Yan
    FedML
ArXivPDFHTML

Papers citing "Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX"

36 / 36 papers shown
Title
PPFL: Privacy-preserving Federated Learning with Trusted Execution
  Environments
PPFL: Privacy-preserving Federated Learning with Trusted Execution Environments
Fan Mo
Hamed Haddadi
Kleomenis Katevas
Eduard Marin
Diego Perino
N. Kourtellis
FedML
106
245
0
29 Apr 2021
secureTF: A Secure TensorFlow Framework
secureTF: A Secure TensorFlow Framework
D. Quoc
Franz Gregor
Sergei Arnautov
Roland Kunkel
Pramod Bhatotia
Christof Fetzer
62
40
0
20 Jan 2021
PrivColl: Practical Privacy-Preserving Collaborative Machine Learning
PrivColl: Practical Privacy-Preserving Collaborative Machine Learning
Yanjun Zhang
Guangdong Bai
Xue Li
Caitlin I. Curtis
Chong Chen
R. Ko
FedML
41
33
0
14 Jul 2020
On the Generalization Benefit of Noise in Stochastic Gradient Descent
On the Generalization Benefit of Noise in Stochastic Gradient Descent
Samuel L. Smith
Erich Elsen
Soham De
MLT
49
99
0
26 Jun 2020
PrivFL: Practical Privacy-preserving Federated Regressions on
  High-dimensional Data over Mobile Networks
PrivFL: Practical Privacy-preserving Federated Regressions on High-dimensional Data over Mobile Networks
K. Mandal
G. Gong
FedML
124
72
0
05 Apr 2020
Trust Management as a Service: Enabling Trusted Execution in the Face of
  Byzantine Stakeholders
Trust Management as a Service: Enabling Trusted Execution in the Face of Byzantine Stakeholders
Franz Gregor
W. Ożga
Sébastien Vaucher
Rafael Pires
D. Quoc
Sergei Arnautov
André Martin
V. Schiavoni
Pascal Felber
Christof Fetzer
42
32
0
31 Mar 2020
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure
  Federated Learning
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
79
298
0
11 Feb 2020
Occlum: Secure and Efficient Multitasking Inside a Single Enclave of
  Intel SGX
Occlum: Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX
Youren Shen
H. Tian
Yu Chen
Kang Chen
Runji Wang
Yi Xu
Yubin Xia
44
154
0
21 Jan 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
208
6,229
0
10 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
391
42,299
0
03 Dec 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive
  Synchronization
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
64
201
0
30 Oct 2019
Why gradient clipping accelerates training: A theoretical justification
  for adaptivity
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
72
459
0
28 May 2019
TensorSCONE: A Secure TensorFlow Framework using Intel SGX
TensorSCONE: A Secure TensorFlow Framework using Intel SGX
Roland Kunkel
D. Quoc
Franz Gregor
Sergei Arnautov
Pramod Bhatotia
Christof Fetzer
FedML
34
67
0
12 Feb 2019
SecureBoost: A Lossless Federated Learning Framework
SecureBoost: A Lossless Federated Learning Framework
Kewei Cheng
Tao Fan
Yilun Jin
Yang Liu
Tianjian Chen
Dimitrios Papadopoulos
Qiang Yang
FedML
95
583
0
25 Jan 2019
A General Approach to Adding Differential Privacy to Iterative Training
  Procedures
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
64
193
0
15 Dec 2018
Secure Federated Transfer Learning
Secure Federated Transfer Learning
Yang Liu
Yan Kang
Chaoping Xing
Tianjian Chen
Qiang Yang
FedML
44
119
0
08 Dec 2018
Knockoff Nets: Stealing Functionality of Black-Box Models
Knockoff Nets: Stealing Functionality of Black-Box Models
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
MLAU
86
534
0
06 Dec 2018
Split learning for health: Distributed deep learning without sharing raw
  patient data
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
118
702
0
03 Dec 2018
Adaptive Communication Strategies to Achieve the Best Error-Runtime
  Trade-off in Local-Update SGD
Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD
Jianyu Wang
Gauri Joshi
FedML
65
232
0
19 Oct 2018
Distributed learning of deep neural network over multiple agents
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
54
603
0
14 Oct 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
111
433
0
22 Aug 2018
Efficient Deep Learning on Multi-Source Private Data
Efficient Deep Learning on Multi-Source Private Data
Nicholas Hynes
Raymond Cheng
D. Song
FedML
57
102
0
17 Jul 2018
How To Backdoor Federated Learning
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
94
1,907
0
02 Jul 2018
PipeDream: Fast and Efficient Pipeline Parallel DNN Training
PipeDream: Fast and Efficient Pipeline Parallel DNN Training
A. Harlap
Deepak Narayanan
Amar Phanishayee
Vivek Seshadri
Nikhil R. Devanur
G. Ganger
Phillip B. Gibbons
AI4CE
54
253
0
08 Jun 2018
Slalom: Fast, Verifiable and Private Execution of Neural Networks in
  Trusted Hardware
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
168
396
0
08 Jun 2018
Chiron: Privacy-preserving Machine Learning as a Service
Chiron: Privacy-preserving Machine Learning as a Service
T. Hunt
Congzheng Song
Reza Shokri
Vitaly Shmatikov
Emmett Witchel
41
201
0
15 Mar 2018
Differentially Private Federated Learning: A Client Level Perspective
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
114
1,293
0
20 Dec 2017
Sparse Communication for Distributed Gradient Descent
Sparse Communication for Distributed Gradient Descent
Alham Fikri Aji
Kenneth Heafield
66
740
0
17 Apr 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep
  Learning
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
111
1,399
0
24 Feb 2017
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
230
4,103
0
18 Oct 2016
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
198
6,179
0
15 Sep 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
102
1,803
0
09 Sep 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
417
18,334
0
27 May 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
66
3,676
0
08 Feb 2016
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
135
499
0
27 Jun 2015
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
132
6,623
0
22 Dec 2012
1