Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.00529
Cited By
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
2 May 2021
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning"
9 / 9 papers shown
Title
Ten Challenging Problems in Federated Foundation Models
Tao Fan
Hanlin Gu
Xuemei Cao
Chee Seng Chan
Qian Chen
...
Y. Zhang
Xiaojin Zhang
Zhenzhe Zheng
Lixin Fan
Qiang Yang
FedML
83
4
0
14 Feb 2025
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
30
0
0
11 Oct 2024
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
40
19
0
27 Nov 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
J. Ma
FedML
24
2
0
06 May 2023
Digital Privacy Under Attack: Challenges and Enablers
Baobao Song
Mengyue Deng
Shiva Raj Pokhrel
Qiujun Lan
R. Doss
Gang Li
AAML
36
3
0
18 Feb 2023
Federated Learning Attacks and Defenses: A Survey
Yao Chen
Yijie Gui
Hong Lin
Wensheng Gan
Yongdong Wu
FedML
38
29
0
27 Nov 2022
PerFED-GAN: Personalized Federated Learning via Generative Adversarial Networks
Xingjian Cao
Gang Sun
Hongfang Yu
Mohsen Guizani
FedML
18
56
0
18 Feb 2022
FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning
Yuezhou Wu
Yan Kang
Jiahuan Luo
Yuanqin He
Qiang Yang
FedML
AAML
19
68
0
16 Nov 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
209
840
0
01 Mar 2021
1