Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.00304
Cited By
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
1 May 2021
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects"
35 / 35 papers shown
Title
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
61
0
0
31 Mar 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
58
0
0
30 Dec 2024
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
Julija Zavadlav
AI4Cl
AI4CE
90
3
0
31 May 2024
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
49
8
0
02 May 2024
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni De Fabritiis
T. Markland
AI4CE
VLM
46
37
0
04 Oct 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
44
57
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
43
49
0
20 Apr 2023
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
45
34
0
07 Apr 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
51
3
0
05 Apr 2023
Neural network with optimal neuron activation functions based on additive Gaussian process regression
Sergei Manzhos
Manabu Ihara
29
18
0
13 Jan 2023
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
21
4
0
24 Dec 2022
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
30
70
0
14 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
32
59
0
11 Dec 2022
Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids
Yang Zhong
Hongyu Yu
Mao Su
X. Gong
H. Xiang
36
36
0
28 Oct 2022
Structure-based drug design with geometric deep learning
Clemens Isert
Kenneth Atz
G. Schneider
58
104
0
19 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
37
138
0
13 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
51
105
0
21 Sep 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
29
11
0
25 Aug 2022
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
55
372
0
05 Aug 2022
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
27
43
0
28 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
48
18
0
17 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
45
66
0
06 Apr 2022
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
28
5
0
30 Mar 2022
Equivariant Graph Attention Networks for Molecular Property Prediction
Tuan Le
Frank Noé
Djork-Arné Clevert
21
21
0
20 Feb 2022
Learning to Discover Medicines
T. Nguyen
Thin Nguyen
T. Tran
34
1
0
14 Feb 2022
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
36
63
0
21 Dec 2021
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
32
53
0
06 Dec 2021
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
32
17
0
15 Oct 2021
Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
29
49
0
10 Aug 2021
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
48
289
0
26 Jul 2021
Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
Christopher J. Anders
David Neumann
Wojciech Samek
K. Müller
Sebastian Lapuschkin
39
64
0
24 Jun 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
37
47
0
08 Jun 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
254
1,241
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
161
448
0
16 Sep 2019
Benefits of depth in neural networks
Matus Telgarsky
155
603
0
14 Feb 2016
1