ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.13669
  4. Cited By
Optimal Stopping via Randomized Neural Networks

Optimal Stopping via Randomized Neural Networks

28 April 2021
Calypso Herrera
Florian Krack
P. Ruyssen
Josef Teichmann
ArXivPDFHTML

Papers citing "Optimal Stopping via Randomized Neural Networks"

19 / 19 papers shown
Title
RandNet-Parareal: a time-parallel PDE solver using Random Neural
  Networks
RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
36
1
0
09 Nov 2024
Scalable Signature-Based Distribution Regression via Reference Sets
Scalable Signature-Based Distribution Regression via Reference Sets
Andrew Alden
Carmine Ventre
Blanka Horvath
21
0
0
11 Oct 2024
Deep Learning Algorithms for Mean Field Optimal Stopping in Finite Space
  and Discrete Time
Deep Learning Algorithms for Mean Field Optimal Stopping in Finite Space and Discrete Time
Lorenzo Magnino
Yuchen Zhu
Mathieu Laurière
AI4CE
24
1
0
11 Oct 2024
Adaptive Device-Edge Collaboration on DNN Inference in AIoT: A Digital
  Twin-Assisted Approach
Adaptive Device-Edge Collaboration on DNN Inference in AIoT: A Digital Twin-Assisted Approach
Shisheng Hu
Mushu Li
Jie Gao
Conghao Zhou
X. Shen
28
13
0
27 May 2024
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge
  Regression
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
Tin Sum Cheng
Aurelien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
31
4
0
02 Oct 2023
Regret-Optimal Federated Transfer Learning for Kernel Regression with
  Applications in American Option Pricing
Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
Xuwei Yang
Anastasis Kratsios
Florian Krach
Matheus Grasselli
Aurelien Lucchi
FedML
21
2
0
08 Sep 2023
How (Implicit) Regularization of ReLU Neural Networks Characterizes the
  Learned Function -- Part II: the Multi-D Case of Two Layers with Random First
  Layer
How (Implicit) Regularization of ReLU Neural Networks Characterizes the Learned Function -- Part II: the Multi-D Case of Two Layers with Random First Layer
Jakob Heiss
Josef Teichmann
Hanna Wutte
AI4CE
17
2
0
20 Mar 2023
Simultaneous upper and lower bounds of American option prices with
  hedging via neural networks
Simultaneous upper and lower bounds of American option prices with hedging via neural networks
Ivan Guo
Nicolas Langrené
Jiahao Wu
17
0
0
24 Feb 2023
Efficient Pricing and Hedging of High Dimensional American Options Using
  Recurrent Networks
Efficient Pricing and Hedging of High Dimensional American Options Using Recurrent Networks
Andrews Na
J. Wan
23
9
0
19 Jan 2023
Quantum-Inspired Tensor Neural Networks for Option Pricing
Quantum-Inspired Tensor Neural Networks for Option Pricing
Raj G. Patel
Chia-Wei Hsing
Serkan Şahi̇n
Samuel Palmer
S. Jahromi
...
Mustafa Abid
Stephane Aubert
Pierre Castellani
Samuel Mugel
Roman Orus
15
3
0
28 Dec 2022
Deep Signature Algorithm for Multi-dimensional Path-Dependent Options
Deep Signature Algorithm for Multi-dimensional Path-Dependent Options
Erhan Bayraktar
Qiaochu Feng
Zhao-qin Zhang
17
2
0
21 Nov 2022
Deep neural network expressivity for optimal stopping problems
Deep neural network expressivity for optimal stopping problems
Lukas Gonon
15
6
0
19 Oct 2022
Convergence of the Backward Deep BSDE Method with Applications to
  Optimal Stopping Problems
Convergence of the Backward Deep BSDE Method with Applications to Optimal Stopping Problems
Chengfan Gao
Siping Gao
Ruimeng Hu
Zimu Zhu
23
14
0
08 Oct 2022
Learning to Liquidate Forex: Optimal Stopping via Adaptive Top-K
  Regression
Learning to Liquidate Forex: Optimal Stopping via Adaptive Top-K Regression
Diksha Garg
Pankaj Malhotra
Anil Bhatia
Sanjay Bhat
L. Vig
Gautam M. Shroff
21
0
0
25 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
49
20
0
31 Jan 2022
Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic
  Processes
Higher Order Kernel Mean Embeddings to Capture Filtrations of Stochastic Processes
C. Salvi
M. Lemercier
Chong Liu
Blanka Hovarth
Theodoros Damoulas
Terry Lyons
9
31
0
08 Sep 2021
Unbiased Optimal Stopping via the MUSE
Unbiased Optimal Stopping via the MUSE
Zhengqing Zhou
Guanyang Wang
Jose H. Blanchet
Peter Glynn
24
6
0
04 Jun 2021
Universal Regular Conditional Distributions
Universal Regular Conditional Distributions
Anastasis Kratsios
28
3
0
17 May 2021
mlOSP: Towards a Unified Implementation of Regression Monte Carlo
  Algorithms
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
M. Ludkovski
28
7
0
01 Dec 2020
1