Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.13614
Cited By
Preserving Earlier Knowledge in Continual Learning with the Help of All Previous Feature Extractors
28 April 2021
Zhuoyun Li
Changhong Zhong
Sijia Liu
Ruixuan Wang
Weishi Zheng
CLL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preserving Earlier Knowledge in Continual Learning with the Help of All Previous Feature Extractors"
7 / 7 papers shown
Title
Neural Collapse Terminus: A Unified Solution for Class Incremental Learning and Its Variants
Yibo Yang
Haobo Yuan
Hefei Ling
Jianlong Wu
Lefei Zhang
Zhouchen Lin
Philip Torr
Dacheng Tao
Guohao Li
CLL
31
8
0
03 Aug 2023
DeCoR: Defy Knowledge Forgetting by Predicting Earlier Audio Codes
Xilin Jiang
Yinghao Aaron Li
N. Mesgarani
CLL
24
1
0
29 May 2023
How Efficient Are Today's Continual Learning Algorithms?
Md Yousuf Harun
Jhair Gallardo
Tyler L. Hayes
Christopher Kanan
24
24
0
29 Mar 2023
CLIP model is an Efficient Continual Learner
Vishal G. Thengane
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
BDL
VLM
CLL
112
46
0
06 Oct 2022
S-Prompts Learning with Pre-trained Transformers: An Occam's Razor for Domain Incremental Learning
Yabin Wang
Zhiwu Huang
Xiaopeng Hong
CLL
VLM
27
213
0
26 Jul 2022
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Da-Wei Zhou
Qiwen Wang
Han-Jia Ye
De-Chuan Zhan
29
123
0
26 May 2022
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
CLL
30
295
0
22 Nov 2021
1