Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.12325
Cited By
Efficient training of physics-informed neural networks via importance sampling
26 April 2021
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient training of physics-informed neural networks via importance sampling"
28 / 28 papers shown
Title
A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate
Hongwei Guo
X. Zhuang
Timon Rabczuk
AI4CE
48
436
0
04 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
115
128
0
14 Dec 2020
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
61
609
0
04 Jul 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
118
373
0
13 May 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
92
867
0
18 Jan 2019
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
71
273
0
13 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
114
359
0
09 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
113
365
0
05 Nov 2018
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
58
376
0
26 Aug 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
75
160
0
13 Aug 2018
Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations
M. Raissi
94
187
0
19 Apr 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
89
519
0
02 Mar 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
112
754
0
20 Jan 2018
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
75
924
0
28 Nov 2017
A unified deep artificial neural network approach to partial differential equations in complex geometries
Jens Berg
K. Nystrom
AI4CE
58
586
0
17 Nov 2017
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
38
755
0
26 Oct 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
117
1,387
0
30 Sep 2017
Deep Learning for Accelerated Reliability Analysis of Infrastructure Networks
M. A. Nabian
Hadi Meidani
AI4CE
46
130
0
28 Aug 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
91
2,060
0
24 Aug 2017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
119
797
0
15 Jun 2017
Biased Importance Sampling for Deep Neural Network Training
Angelos Katharopoulos
François Fleuret
50
68
0
31 May 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
233
4,630
0
16 Apr 2017
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
202
6,184
0
15 Sep 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
429
18,346
0
27 May 2016
Variance Reduction in SGD by Distributed Importance Sampling
Guillaume Alain
Alex Lamb
Chinnadhurai Sankar
Aaron Courville
Yoshua Bengio
FedML
79
199
0
20 Nov 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
156
2,800
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
146
6,626
0
22 Dec 2012
1