Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.12225
Cited By
DC3: A learning method for optimization with hard constraints
25 April 2021
P. Donti
David Rolnick
J. Zico Kolter
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DC3: A learning method for optimization with hard constraints"
38 / 38 papers shown
Title
Efficient End-to-End Learning for Decision-Making: A Meta-Optimization Approach
Rares Cristian
Pavithra Harsha
Georgia Perakis
Brian Quanz
12
0
0
16 May 2025
Towards graph neural networks for provably solving convex optimization problems
Chendi Qian
Christopher Morris
52
0
0
04 Feb 2025
Differentiable Projection-based Learn to Optimize in Wireless Network-Part I: Convex Constrained (Non-)Convex Programming
Xiucheng Wang
Xuan Zhao
Nan Cheng
44
0
0
29 Jan 2025
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
163
3
0
14 Oct 2024
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
59
0
0
04 Oct 2024
Unconditional stability of a recurrent neural circuit implementing divisive normalization
Shivang Rawat
David J. Heeger
Stefano Martiniani
29
0
0
27 Sep 2024
Self-Supervised Learning of Iterative Solvers for Constrained Optimization
Lukas Luken
Sergio Lucia
36
0
0
12 Sep 2024
Differentiable-Optimization Based Neural Policy for Occlusion-Aware Target Tracking
Houman Masnavi
Arun Kumar Singh
Farrokh Janabi-Sharifi
54
0
0
20 Jun 2024
Dual Interior Point Optimization Learning
Michael Klamkin
Mathieu Tanneau
Pascal Van Hentenryck
30
2
0
04 Feb 2024
Approximating Solutions to the Knapsack Problem using the Lagrangian Dual Framework
Mitchell Keegan
Mahdi Abolghasemi
59
0
0
06 Dec 2023
Energy-based Potential Games for Joint Motion Forecasting and Control
Christopher P. Diehl
Tobias Klosek
Martin Krüger
Nils Murzyn
Timo Osterburg
Torsten Bertram
AI4CE
29
6
0
04 Dec 2023
Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and Optimization
James Kotary
Vincenzo Di Vito
Jacob K Christopher
Pascal Van Hentenryck
Ferdinando Fioretto
39
3
0
22 Nov 2023
OpenForest: A data catalogue for machine learning in forest monitoring
Arthur Ouaknine
T. Kattenborn
Etienne Laliberté
David Rolnick
53
6
0
01 Nov 2023
RAYEN: Imposition of Hard Convex Constraints on Neural Networks
J. Tordesillas
Jonathan P. How
Marco Hutter
32
11
0
17 Jul 2023
End-to-End Feasible Optimization Proxies for Large-Scale Economic Dispatch
Wenbo Chen
Mathieu Tanneau
Pascal Van Hentenryck
34
30
0
23 Apr 2023
End-to-End Learning with Multiple Modalities for System-Optimised Renewables Nowcasting
Rushil Vohra
A. Rajaei
J. Cremer
24
5
0
14 Apr 2023
Contingency Analyses with Warm Starter using Probabilistic Graphical Model
Shimiao Li
Amritanshu Pandey
L. Pileggi
AI4CE
34
2
0
10 Apr 2023
Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees
Rahul Nellikkath
Spyros Chatzivasileiadis
36
3
0
23 Mar 2023
Constrained Empirical Risk Minimization: Theory and Practice
Eric Marcus
Ray Sheombarsing
J. Sonke
Jonas Teuwen
15
1
0
09 Feb 2023
Compact Optimization Learning for AC Optimal Power Flow
Seonho Park
Wenbo Chen
Terrence W.K. Mak
Pascal Van Hentenryck
32
17
0
21 Jan 2023
Minimizing Worst-Case Violations of Neural Networks
Rahul Nellikkath
Spyros Chatzivasileiadis
38
3
0
21 Dec 2022
Evaluating Model-free Reinforcement Learning toward Safety-critical Tasks
Linrui Zhang
Qin Zhang
Li Shen
Bo Yuan
Xueqian Wang
Dacheng Tao
OffRL
48
26
0
12 Dec 2022
Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian Duality
Ke Chen
Shourya Bose
Yu Zhang
15
7
0
07 Dec 2022
The intersection of machine learning with forecasting and optimisation: theory and applications
M. Abolghasemi
23
1
0
24 Nov 2022
Deep Equilibrium Approaches to Diffusion Models
Ashwini Pokle
Zhengyang Geng
Zico Kolter
DiffM
30
39
0
23 Oct 2022
Differentiable Constrained Imitation Learning for Robot Motion Planning and Control
Christopher P. Diehl
Janis Adamek
Martin Krüger
F. Hoffmann
Torsten Bertram
16
4
0
21 Oct 2022
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
38
46
0
18 Aug 2022
Physics-Informed Learning of Aerosol Microphysics
P. Harder
D. Watson‐Parris
P. Stier
Dominik Strassel
N. Gauger
J. Keuper
19
20
0
24 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
34
28
0
18 Jul 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
32
28
0
16 Dec 2021
DNN-based Policies for Stochastic AC OPF
Sarthak Gupta
Sidhant Misra
Deepjyoti Deka
V. Kekatos
34
13
0
04 Dec 2021
Physics-Informed Neural Networks for AC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
34
88
0
06 Oct 2021
Learning to Solve the AC Optimal Power Flow via a Lagrangian Approach
Ling Zhang
Baosen Zhang
22
8
0
04 Oct 2021
Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy
Tianshu Wang
P. Melchior
18
7
0
27 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
51
614
0
02 Sep 2021
Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
13
32
0
28 Jun 2021
First-order Methods Almost Always Avoid Saddle Points
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
95
82
0
20 Oct 2017
1