Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.12031
Cited By
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
24 April 2021
Yuetian Luo
Anru R. Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence"
7 / 7 papers shown
Title
Information-Theoretic Guarantees for Recovering Low-Rank Tensors from Symmetric Rank-One Measurements
Eren C. Kızıldağ
63
0
0
07 Feb 2025
Time Series Generative Learning with Application to Brain Imaging Analysis
Zhenghao Li
Sanyou Wu
Long Feng
MedIm
41
0
0
19 Jul 2024
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Zhen Qin
Zhihui Zhu
74
4
0
10 Jun 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay
Yuetian Luo
Anru R. Zhang
29
19
0
17 Jun 2022
Tensor Principal Component Analysis in High Dimensional CP Models
Yuefeng Han
Cun-Hui Zhang
31
10
0
10 Aug 2021
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
1