ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.11893
  4. Cited By
LGD-GCN: Local and Global Disentangled Graph Convolutional Networks

LGD-GCN: Local and Global Disentangled Graph Convolutional Networks

24 April 2021
Jingwei Guo
Kaizhu Huang
Xinping Yi
Rui Zhang
ArXivPDFHTML

Papers citing "LGD-GCN: Local and Global Disentangled Graph Convolutional Networks"

3 / 3 papers shown
Title
Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
Mao Wang
Tao Wu
Xingping Xian
Shaojie Qiao
Weina Niu
Canyixing Cui
34
0
0
23 Apr 2025
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
260
1,812
0
25 Nov 2016
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,124
0
25 Jul 2012
1