ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10719
  4. Cited By
A Fully Spiking Hybrid Neural Network for Energy-Efficient Object
  Detection

A Fully Spiking Hybrid Neural Network for Energy-Efficient Object Detection

21 April 2021
Biswadeep Chakraborty
Xueyuan She
Saibal Mukhopadhyay
ArXivPDFHTML

Papers citing "A Fully Spiking Hybrid Neural Network for Energy-Efficient Object Detection"

9 / 9 papers shown
Title
STAA-SNN: Spatial-Temporal Attention Aggregator for Spiking Neural Networks
STAA-SNN: Spatial-Temporal Attention Aggregator for Spiking Neural Networks
Tianqing Zhang
Kairong Yu
Xian Zhong
Hongwei Wang
Qi Xu
Qiang Zhang
101
1
0
04 Mar 2025
Frequency-Adaptive Low-Latency Object Detection Using Events and Frames
Frequency-Adaptive Low-Latency Object Detection Using Events and Frames
Haitian Zhang
Xiangyuan Wang
Chang Xu
Xinya Wang
Fang Xu
Huai Yu
Lei Yu
Wen Yang
ObjD
102
0
0
05 Dec 2024
Why Do Deep Residual Networks Generalize Better than Deep Feedforward
  Networks? -- A Neural Tangent Kernel Perspective
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective
Kaixuan Huang
Yuqing Wang
Molei Tao
T. Zhao
MLT
26
97
0
14 Feb 2020
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural
  Networks
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
70
241
0
18 Jan 2019
Conversion of Artificial Recurrent Neural Networks to Spiking Neural
  Networks for Low-power Neuromorphic Hardware
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware
P. U. Diehl
Guido Zarrella
A. Cassidy
Bruno U. Pedroni
Emre Neftci
46
217
0
16 Jan 2016
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
85
8,309
0
06 Nov 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
189
15,825
0
12 Nov 2013
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
110
4,946
0
06 Oct 2013
Once more on comparison of tail index estimators
Once more on comparison of tail index estimators
V. Paulauskas
Marijus Vaivciulis
56
17
0
07 Apr 2011
1