ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10482
  4. Cited By
GraphSVX: Shapley Value Explanations for Graph Neural Networks

GraphSVX: Shapley Value Explanations for Graph Neural Networks

18 April 2021
Alexandre Duval
Fragkiskos D. Malliaros
    FAtt
ArXivPDFHTML

Papers citing "GraphSVX: Shapley Value Explanations for Graph Neural Networks"

15 / 15 papers shown
Title
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
52
0
0
19 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
76
2
0
14 Feb 2025
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
95
0
0
02 Dec 2024
Improving the Weighting Strategy in KernelSHAP
Improving the Weighting Strategy in KernelSHAP
Lars Henry Berge Olsen
Martin Jullum
TDI
FAtt
77
2
0
07 Oct 2024
Kolmogorov-Arnold Graph Neural Networks
Kolmogorov-Arnold Graph Neural Networks
Gianluca De Carlo
Andrea Mastropietro
Aris Anagnostopoulos
25
26
0
26 Jun 2024
Structural Explanations for Graph Neural Networks using HSIC
Structural Explanations for Graph Neural Networks using HSIC
Ayato Toyokuni
Makoto Yamada
27
1
0
04 Feb 2023
On the Limit of Explaining Black-box Temporal Graph Neural Networks
On the Limit of Explaining Black-box Temporal Graph Neural Networks
Minh Nhat Vu
My T. Thai
21
4
0
02 Dec 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
33
7
0
28 Sep 2022
ScoreCAM GNN: une explication optimale des réseaux profonds sur
  graphes
ScoreCAM GNN: une explication optimale des réseaux profonds sur graphes
Adrien Raison
Pascal Bourdon
David Helbert
FAtt
GNN
27
0
0
26 Jul 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
  Privacy Protection
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
45
25
0
20 May 2022
The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
21
204
0
11 Feb 2022
GStarX: Explaining Graph Neural Networks with Structure-Aware
  Cooperative Games
GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
Shichang Zhang
Yozen Liu
Neil Shah
Yizhou Sun
FAtt
33
45
0
28 Jan 2022
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
23
38
0
18 May 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
595
0
31 Dec 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural
  Networks
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
37
345
0
17 Jan 2020
1