Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.09884
Cited By
v1
v2 (latest)
Multi-objective Evolutionary Algorithms are Generally Good: Maximizing Monotone Submodular Functions over Sequences
20 April 2021
Chao Qian
Danyang Liu
Chao Feng
K. Tang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Multi-objective Evolutionary Algorithms are Generally Good: Maximizing Monotone Submodular Functions over Sequences"
10 / 10 papers shown
Title
Result Diversification by Multi-objective Evolutionary Algorithms with Theoretical Guarantees
Chao Qian
Danqin Liu
Zhi Zhou
26
14
0
18 Oct 2021
Pareto Optimization for Subset Selection with Dynamic Partition Matroid Constraints
A. Do
Frank Neumann
44
8
0
16 Dec 2020
Maximizing Submodular or Monotone Functions under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms
A. Do
Frank Neumann
43
9
0
23 Jun 2020
Multi-objective Evolutionary Algorithms are Still Good: Maximizing Monotone Approximately Submodular Minus Modular Functions
Chao Qian
40
23
0
12 Oct 2019
Submodular Maximization Beyond Non-negativity: Guarantees, Fast Algorithms, and Applications
Christopher Harshaw
Moran Feldman
Justin Ward
Amin Karbasi
47
104
0
19 Apr 2019
Adaptive Sequence Submodularity
Marko Mitrovic
Ehsan Kazemi
Moran Feldman
Andreas Krause
Amin Karbasi
36
27
0
15 Feb 2019
Pareto Optimization for Subset Selection with Dynamic Cost Constraints
Vahid Roostapour
Aneta Neumann
Frank Neumann
Tobias Friedrich
43
73
0
14 Nov 2018
Maximizing Submodular or Monotone Approximately Submodular Functions by Multi-objective Evolutionary Algorithms
Chao Qian
Yang Yu
K. Tang
Xin Yao
Zhi Zhou
41
50
0
20 Nov 2017
Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection
Abhimanyu Das
David Kempe
202
484
0
19 Feb 2011
Computational Complexity Analysis of Simple Genetic Programming On Two Problems Modeling Isolated Program Semantics
Greg Durrett
Frank Neumann
Una-May O’Reilly
105
51
0
27 Jul 2010
1