ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09856
  4. Cited By
Permutation-Invariant Variational Autoencoder for Graph-Level
  Representation Learning

Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning

20 April 2021
R. Winter
Frank Noé
Djork-Arné Clevert
    BDL
    SSL
ArXivPDFHTML

Papers citing "Permutation-Invariant Variational Autoencoder for Graph-Level Representation Learning"

12 / 12 papers shown
Title
Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Shuaiqun Pan
Yash J. Patel
Aneta Neumann
Frank Neumann
Thomas Bäck
Hao Wang
36
0
0
30 Jan 2025
Signed Graph Autoencoder for Explainable and Polarization-Aware Network Embeddings
Signed Graph Autoencoder for Explainable and Polarization-Aware Network Embeddings
Nikolaos Nakis
Chrysoula Kosma
Giannis Nikolentzos
Michalis Chatzianastasis
Iakovos Evdaimon
Michalis Vazirgiannis
46
1
0
16 Sep 2024
Self-supervised Photographic Image Layout Representation Learning
Self-supervised Photographic Image Layout Representation Learning
Zhaoran Zhao
Peng Lu
Xujun Peng
Wenhao Guo
SSL
40
0
0
06 Mar 2024
Interpreting Equivariant Representations
Interpreting Equivariant Representations
Andreas Abildtrup Hansen
Anna Calissano
Aasa Feragen
53
1
0
23 Jan 2024
Self-Supervised Detection of Perfect and Partial Input-Dependent
  Symmetries
Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Alonso Urbano
David W. Romero
30
1
0
19 Dec 2023
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level
  Graph Representation Learning
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Hanxuan Yang
Qingchao Kong
Wenji Mao
BDL
20
0
0
09 Dec 2023
An efficient graph generative model for navigating ultra-large
  combinatorial synthesis libraries
An efficient graph generative model for navigating ultra-large combinatorial synthesis libraries
Aryan Pedawi
P. Gniewek
Chao-Ling Chang
Brandon M. Anderson
H. V. D. Bedem
34
5
0
19 Oct 2022
Unsupervised Learning of Group Invariant and Equivariant Representations
Unsupervised Learning of Group Invariant and Equivariant Representations
R. Winter
Marco Bertolini
Tuan Le
Frank Noé
Djork-Arné Clevert
25
40
0
15 Feb 2022
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
206
885
0
07 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
193
1,778
0
02 Mar 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1