Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.09563
Cited By
A Framework using Contrastive Learning for Classification with Noisy Labels
19 April 2021
Madalina Ciortan
R. Dupuis
Thomas Peel
VLM
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Framework using Contrastive Learning for Classification with Noisy Labels"
31 / 31 papers shown
Title
Multi-level Supervised Contrastive Learning
Naghmeh Ghanooni
Barbod Pajoum
Harshit Rawal
Sophie Fellenz
Vo Nguyen Le Duy
Marius Kloft
151
0
0
04 Feb 2025
Identifying Training Stop Point with Noisy Labeled Data
Sree Ram Kamabattula
V. Devarajan
Babak Namazi
G. Sankaranarayanan
NoLa
15
2
0
24 Dec 2020
Multi-Objective Interpolation Training for Robustness to Label Noise
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
63
116
0
08 Dec 2020
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning
Zhuowei Wang
Jing Jiang
Bo Han
Lei Feng
Bo An
Gang Niu
Guodong Long
NoLa
57
17
0
02 Dec 2020
Contrastive Representation Learning: A Framework and Review
Phúc H. Lê Khắc
Graham Healy
Alan F. Smeaton
SSL
AI4TS
304
708
0
10 Oct 2020
Hard Negative Mixing for Contrastive Learning
Yannis Kalantidis
Mert Bulent Sariyildiz
Noé Pion
Philippe Weinzaepfel
Diane Larlus
SSL
125
643
0
02 Oct 2020
MoPro: Webly Supervised Learning with Momentum Prototypes
Junnan Li
Caiming Xiong
Guosheng Lin
130
95
0
17 Sep 2020
A Framework For Contrastive Self-Supervised Learning And Designing A New Approach
William Falcon
Kyunghyun Cho
SSL
67
104
0
31 Aug 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
99
985
0
16 Jul 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
99
565
0
30 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
65
441
0
24 Jun 2020
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
218
4,073
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
360
6,792
0
13 Jun 2020
Supervised Contrastive Learning
Prannay Khosla
Piotr Teterwak
Chen Wang
Aaron Sarna
Yonglong Tian
Phillip Isola
Aaron Maschinot
Ce Liu
Dilip Krishnan
SSL
145
4,537
0
23 Apr 2020
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
458
3,427
0
09 Mar 2020
No Regret Sample Selection with Noisy Labels
H. Song
N. Mitsuo
S. Uchida
D. Suehiro
NoLa
53
5
0
06 Mar 2020
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
345
514
0
05 Mar 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
105
1,029
0
18 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
353
18,739
0
13 Feb 2020
Self-Supervised Learning of Pretext-Invariant Representations
Ishan Misra
Laurens van der Maaten
SSL
VLM
103
1,453
0
04 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
444
42,393
0
03 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
192
12,073
0
13 Nov 2019
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
83
315
0
04 Oct 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
68
378
0
01 Jun 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
78
611
0
25 Apr 2019
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
58
782
0
14 Jan 2019
Benchmark Analysis of Representative Deep Neural Network Architectures
Simone Bianco
Rémi Cadène
Luigi Celona
Paolo Napoletano
BDL
66
677
0
01 Oct 2018
Exploring the Limits of Weakly Supervised Pretraining
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
Laurens van der Maaten
VLM
180
1,367
0
02 May 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
273
9,759
0
25 Oct 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
120
1,816
0
16 Jun 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,625
0
10 Nov 2016
1