ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09223
  4. Cited By
Coarse-to-Fine Searching for Efficient Generative Adversarial Networks

Coarse-to-Fine Searching for Efficient Generative Adversarial Networks

19 April 2021
Jiahao Wang
Han Shu
Weihao Xia
Yujiu Yang
Yunhe Wang
    GAN
ArXiv (abs)PDFHTML

Papers citing "Coarse-to-Fine Searching for Efficient Generative Adversarial Networks"

11 / 61 papers shown
Title
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,693
0
15 Sep 2016
Generative Adversarial Text to Image Synthesis
Generative Adversarial Text to Image Synthesis
Scott E. Reed
Zeynep Akata
Xinchen Yan
Lajanugen Logeswaran
Bernt Schiele
Honglak Lee
GAN
203
3,146
0
17 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,623
0
06 Apr 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
237
10,249
0
27 Mar 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
258
14,012
0
19 Nov 2015
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Jiwon Kim
Jung Kwon Lee
Kyoung Mu Lee
SupR
104
6,188
0
14 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
259
8,842
0
01 Oct 2015
Deep Generative Image Models using a Laplacian Pyramid of Adversarial
  Networks
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
Emily L. Denton
Soumith Chintala
Arthur Szlam
Rob Fergus
GAN
99
2,242
0
18 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,660
0
09 Mar 2015
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
308
3,887
0
19 Dec 2014
Conditional Generative Adversarial Nets
Conditional Generative Adversarial Nets
M. Berk Mirza
Simon Osindero
GANSyDaAI4CE
258
10,409
0
06 Nov 2014
Previous
12