ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09216
  4. Cited By
SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
  Background Prototypes

SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive Background Prototypes

19 April 2021
Jiacheng Chen
Bin-Bin Gao
Zongqing Lu
Jing-Hao Xue
Chengjie Wang
Q. Liao
    VLM
ArXivPDFHTML

Papers citing "SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive Background Prototypes"

3 / 3 papers shown
Title
Semi-Supervised Semantic Segmentation with Cross Teacher Training
Semi-Supervised Semantic Segmentation with Cross Teacher Training
Hui Xiao
Li Dong
Kangkang Song
Hao Xu
Shuibo Fu
Diqun Yan
Chengbin Peng
32
26
0
03 Sep 2022
Unsupervised Contrastive Domain Adaptation for Semantic Segmentation
Unsupervised Contrastive Domain Adaptation for Semantic Segmentation
Feihu Zhang
V. Koltun
Philip H. S. Torr
René Ranftl
Stephan R. Richter
15
6
0
18 Apr 2022
CRNet: Cross-Reference Networks for Few-Shot Segmentation
CRNet: Cross-Reference Networks for Few-Shot Segmentation
Weide Liu
Chi Zhang
Guosheng Lin
Fayao Liu
SSeg
152
192
0
24 Mar 2020
1