Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.08984
Cited By
Contrastive Learning Improves Model Robustness Under Label Noise
19 April 2021
Aritra Ghosh
Andrew Lan
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Github (32★)
Papers citing
"Contrastive Learning Improves Model Robustness Under Label Noise"
33 / 33 papers shown
Title
Multi-level Supervised Contrastive Learning
Naghmeh Ghanooni
Barbod Pajoum
Harshit Rawal
Sophie Fellenz
Vo Nguyen Le Duy
Marius Kloft
193
0
0
04 Feb 2025
Do We Really Need Gold Samples for Sample Weighting Under Label Noise?
Aritra Ghosh
Andrew Lan
NoLa
70
9
0
19 Apr 2021
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels
Evgenii Zheltonozhskii
Chaim Baskin
A. Mendelson
A. Bronstein
Or Litany
SSL
97
94
0
25 Mar 2021
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
104
569
0
30 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
76
445
0
24 Jun 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
110
1,034
0
18 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
390
18,897
0
13 Feb 2020
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
Yang Liu
Hongyi Guo
NoLa
76
242
0
08 Oct 2019
L_DMI: An Information-theoretic Noise-robust Loss Function
Yilun Xu
Peng Cao
Yuqing Kong
Yizhou Wang
NoLa
68
57
0
08 Sep 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
60
950
0
28 Jun 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
159
3,033
0
06 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
97
616
0
25 Apr 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
89
727
0
28 Jan 2019
Learning to Learn from Noisy Labeled Data
Junnan Li
Yongkang Wong
Qi Zhao
Mohan Kankanhalli
NoLa
69
334
0
13 Dec 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
179
732
0
13 Jun 2018
Masking: A New Perspective of Noisy Supervision
Bo Han
Jiangchao Yao
Gang Niu
Mingyuan Zhou
Ivor Tsang
Ya Zhang
Masashi Sugiyama
NoLa
78
255
0
21 May 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,615
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
123
2,082
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
74
712
0
30 Mar 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
152
1,431
0
24 Mar 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
80
959
0
27 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
131
1,456
0
14 Dec 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
316
9,811
0
25 Oct 2017
Large Batch Training of Convolutional Networks
Yang You
Igor Gitman
Boris Ginsburg
ODL
141
852
0
13 Aug 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Frank Hutter
SSeg
OOD
173
649
0
27 Jul 2017
Learning From Noisy Large-Scale Datasets With Minimal Supervision
Andreas Veit
N. Alldrin
Gal Chechik
Ivan Krasin
Abhinav Gupta
Serge J. Belongie
142
480
0
06 Jan 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
120
1,459
0
13 Sep 2016
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Brendan van Rooyen
A. Menon
Robert C. Williamson
NoLa
172
313
0
28 May 2015
Webly Supervised Learning of Convolutional Networks
Xinlei Chen
Abhinav Gupta
SSL
90
373
0
07 May 2015
Training Deep Neural Networks on Noisy Labels with Bootstrapping
Scott E. Reed
Honglak Lee
Dragomir Anguelov
Christian Szegedy
D. Erhan
Andrew Rabinovich
NoLa
125
1,023
0
20 Dec 2014
Making Risk Minimization Tolerant to Label Noise
Aritra Ghosh
Naresh Manwani
P. Sastry
NoLa
163
215
0
14 Mar 2014
Double Ramp Loss Based Reject Option Classifier
Naresh Manwani
Aritra Ghosh
P. Sastry
Ramasubramanian Sundararajan
84
49
0
26 Nov 2013
Identifying Mislabeled Training Data
C. Brodley
M. Friedl
111
972
0
01 Jun 2011
1