ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08938
  4. Cited By
On the approximation of functions by tanh neural networks

On the approximation of functions by tanh neural networks

18 April 2021
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
ArXivPDFHTML

Papers citing "On the approximation of functions by tanh neural networks"

23 / 23 papers shown
Title
Learning with Noisy Labels: the Exploration of Error Bounds in Classification
Haixia Liu
Boxiao Li
Can Yang
Yang Wang
41
0
0
28 Jan 2025
Deep Kalman Filters Can Filter
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
Golden Ratio-Based Sufficient Dimension Reduction
Golden Ratio-Based Sufficient Dimension Reduction
Wenjing Yang
Yuhong Yang
33
0
0
25 Oct 2024
Convergence of the Deep Galerkin Method for Mean Field Control Problems
Convergence of the Deep Galerkin Method for Mean Field Control Problems
William Hofgard
Jingruo Sun
Asaf Cohen
AI4CE
37
3
0
22 May 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of
  Experts
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Approximation of Solution Operators for High-dimensional PDEs
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural
  Network Derivatives
Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural Network Derivatives
Yahong Yang
Haizhao Yang
Yang Xiang
31
19
0
15 May 2023
Error Analysis of Physics-Informed Neural Networks for Approximating
  Dynamic PDEs of Second Order in Time
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
21
1
0
22 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs:
  towards optimized I-FENN performance
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
The Mori-Zwanzig formulation of deep learning
The Mori-Zwanzig formulation of deep learning
D. Venturi
Xiantao Li
25
1
0
12 Sep 2022
Shallow neural network representation of polynomials
Shallow neural network representation of polynomials
A. Beknazaryan
22
0
0
17 Aug 2022
Error analysis for deep neural network approximations of parametric
  hyperbolic conservation laws
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Expressive power of binary and ternary neural networks
Expressive power of binary and ternary neural networks
A. Beknazaryan
MQ
19
0
0
27 Jun 2022
Residual-Concatenate Neural Network with Deep Regularization Layers for
  Binary Classification
Residual-Concatenate Neural Network with Deep Regularization Layers for Binary Classification
Abhishek Gupta
Sruthi Nair
Raunak Joshi
V. Chitre
23
5
0
25 May 2022
Variable-Input Deep Operator Networks
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
45
23
0
23 May 2022
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
Variational Physics Informed Neural Networks: the role of quadratures
  and test functions
Variational Physics Informed Neural Networks: the role of quadratures and test functions
S. Berrone
C. Canuto
Moreno Pintore
25
40
0
05 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in
  Physics-Informed Neural Networks
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
28
0
30 Aug 2021
Error analysis for physics informed neural networks (PINNs)
  approximating Kolmogorov PDEs
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
21
100
0
28 Jun 2021
Symplectic Learning for Hamiltonian Neural Networks
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
24
35
0
22 Jun 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
238
2,298
0
18 Oct 2020
1