ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08903
  4. Cited By
SurvNAM: The machine learning survival model explanation

SurvNAM: The machine learning survival model explanation

18 April 2021
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
    AAML
    FAtt
ArXivPDFHTML

Papers citing "SurvNAM: The machine learning survival model explanation"

6 / 6 papers shown
Title
SurvBeX: An explanation method of the machine learning survival models
  based on the Beran estimator
SurvBeX: An explanation method of the machine learning survival models based on the Beran estimator
Lev V. Utkin
Danila Eremenko
A. Konstantinov
30
4
0
07 Aug 2023
Extending the Neural Additive Model for Survival Analysis with EHR Data
Extending the Neural Additive Model for Survival Analysis with EHR Data
M. Peroni
Marharyta Kurban
Sun-Young Yang
Young Sun Kim
H. Kang
J. Song
17
6
0
15 Nov 2022
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
144
660
0
28 Dec 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
43
405
0
29 Apr 2020
SurvLIME: A method for explaining machine learning survival models
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
108
89
0
18 Mar 2020
DeepSurv: Personalized Treatment Recommender System Using A Cox
  Proportional Hazards Deep Neural Network
DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network
Jared Katzman
Uri Shaham
Jonathan Bates
A. Cloninger
Tingting Jiang
Y. Kluger
BDL
CML
OOD
109
1,231
0
02 Jun 2016
1