Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.08426
Cited By
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
17 April 2021
N. Sukumar
Ankit Srivastava
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks"
26 / 76 papers shown
Title
BINN: A deep learning approach for computational mechanics problems based on boundary integral equations
Jia Sun
Yinghua Liu
Yizheng Wang
Z. Yao
Xiao-ping Zheng
PINN
AI4CE
22
23
0
11 Jan 2023
Harmonic (Quantum) Neural Networks
Atiyo Ghosh
Antonio A. Gentile
M. Dagrada
Chul Lee
S. Kim
Hyukgeun Cha
Yunjun Choi
Brad Kim
J. Kye
V. Elfving
AI4CE
40
1
0
14 Dec 2022
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
39
3
0
24 Nov 2022
Neural PDE Solvers for Irregular Domains
Biswajit Khara
Ethan Herron
Zhanhong Jiang
Aditya Balu
Chih-Hsuan Yang
...
Anushrut Jignasu
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
AI4CE
24
7
0
07 Nov 2022
Adaptive deep density approximation for fractional Fokker-Planck equations
Li Zeng
Xiaoliang Wan
Tao Zhou
21
5
0
26 Oct 2022
FO-PINNs: A First-Order formulation for Physics Informed Neural Networks
R. J. Gladstone
M. A. Nabian
N. Sukumar
Ankit Srivastava
Hadi Meidani
PINN
AI4CE
23
0
0
25 Oct 2022
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
18
51
0
26 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
24
5
0
03 Jul 2022
Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
AI4CE
19
0
0
01 Jul 2022
Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions
V. Boussange
S. Becker
Arnulf Jentzen
Benno Kuckuck
Loïc Pellissier
25
12
0
07 May 2022
Enhanced Physics-Informed Neural Networks with Augmented Lagrangian Relaxation Method (AL-PINNs)
Hwijae Son
S. Cho
H. Hwang
PINN
25
41
0
29 Apr 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
39
23
0
11 Apr 2022
Calibrating constitutive models with full-field data via physics informed neural networks
Craig M. Hamel
K. Long
S. Kramer
AI4CE
27
28
0
30 Mar 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
49
199
0
14 Mar 2022
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
38
451
0
01 Nov 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
39
19
0
04 Oct 2021
CENN: Conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
Yi-Zhou Wang
Jia Sun
Wei Li
Zaiyuan Lu
Yinghua Liu
47
37
0
25 Sep 2021
Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries
N. Borrel-Jensen
A. Engsig-Karup
C. Jeong
AI4CE
20
34
0
23 Sep 2021
Variational Physics Informed Neural Networks: the role of quadratures and test functions
S. Berrone
C. Canuto
Moreno Pintore
31
41
0
05 Sep 2021
Training multi-objective/multi-task collocation physics-informed neural network with student/teachers transfer learnings
B. Bahmani
WaiChing Sun
PINN
AI4CE
36
17
0
24 Jul 2021
Mosaic Flows: A Transferable Deep Learning Framework for Solving PDEs on Unseen Domains
Hengjie Wang
R. Planas
Aparna Chandramowlishwaran
Ramin Bostanabad
AI4CE
50
61
0
22 Apr 2021
SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
PINN
AI4CE
27
76
0
25 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
439
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
128
509
0
11 Mar 2020
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
159
1,342
0
27 Aug 2019
Previous
1
2