ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.08060
  4. Cited By
MEG: Generating Molecular Counterfactual Explanations for Deep Graph
  Networks

MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks

16 April 2021
Danilo Numeroso
D. Bacciu
ArXivPDFHTML

Papers citing "MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks"

8 / 8 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
76
2
0
14 Feb 2025
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
49
2
0
19 Dec 2023
Robust Stochastic Graph Generator for Counterfactual Explanations
Robust Stochastic Graph Generator for Counterfactual Explanations
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
CML
13
3
0
18 Dec 2023
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
35
53
0
16 Oct 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
  Privacy Protection
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
37
25
0
20 May 2022
Robust Counterfactual Explanations on Graph Neural Networks
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
40
96
0
08 Jul 2021
Quantitative Evaluation of Explainable Graph Neural Networks for
  Molecular Property Prediction
Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction
Jiahua Rao
Shuangjia Zheng
Yuedong Yang
21
46
0
01 Jul 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
181
1,778
0
02 Mar 2017
1