ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07359
  4. Cited By
Robust Generalised Bayesian Inference for Intractable Likelihoods

Robust Generalised Bayesian Inference for Intractable Likelihoods

15 April 2021
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
    UQCV
ArXivPDFHTML

Papers citing "Robust Generalised Bayesian Inference for Intractable Likelihoods"

25 / 25 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
Predictive variational inference: Learn the predictively optimal posterior distribution
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
31
0
0
18 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
29
1
0
18 Oct 2024
Sequential Kernelized Stein Discrepancy
Sequential Kernelized Stein Discrepancy
Diego Martinez-Taboada
Aaditya Ramdas
38
0
0
26 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
On properties of fractional posterior in generalized reduced-rank
  regression
On properties of fractional posterior in generalized reduced-rank regression
The Tien Mai
26
1
0
27 Apr 2024
On high-dimensional classification by sparse generalized Bayesian
  logistic regression
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
46
1
0
19 Mar 2024
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
18
10
0
01 Nov 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
32
0
0
21 May 2023
Robust and Scalable Bayesian Online Changepoint Detection
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano
F. Briol
Jeremias Knoblauch
25
12
0
09 Feb 2023
Misspecification-robust Sequential Neural Likelihood for
  Simulation-based Inference
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
25
10
0
31 Jan 2023
PAC-Bayesian Soft Actor-Critic Learning
PAC-Bayesian Soft Actor-Critic Learning
Bahareh Tasdighi
Abdullah Akgul
Manuel Haussmann
Kenny Kazimirzak Brink
M. Kandemir
26
3
0
30 Jan 2023
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
22
10
0
28 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
42
14
0
26 Sep 2022
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio
  Estimation
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
28
30
0
29 Aug 2022
A Fourier representation of kernel Stein discrepancy with application to
  Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
George Wynne
Mikolaj Kasprzak
Andrew B. Duncan
25
4
0
09 Jun 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
20
42
0
09 Feb 2022
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Burkner
Ullrich Kothe
Stefan T. Radev
22
34
0
16 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
24
14
0
19 Nov 2021
Adaptation of the Tuning Parameter in General Bayesian Inference with
  Robust Divergence
Adaptation of the Tuning Parameter in General Bayesian Inference with Robust Divergence
S. Yonekura
S. Sugasawa
17
23
0
13 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Metropolis-Hastings with Averaged Acceptance Ratios
Metropolis-Hastings with Averaged Acceptance Ratios
Christophe Andrieu
Sinan Yildiri
Arnaud Doucet
Nicolas Chopin
21
6
0
29 Dec 2020
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
56
72
0
29 Sep 2019
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
104
324
0
09 Feb 2016
1