ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.07167
  4. Cited By
Orthogonalizing Convolutional Layers with the Cayley Transform

Orthogonalizing Convolutional Layers with the Cayley Transform

14 April 2021
Asher Trockman
J. Zico Kolter
ArXivPDFHTML

Papers citing "Orthogonalizing Convolutional Layers with the Cayley Transform"

50 / 51 papers shown
Title
Approximation theory for 1-Lipschitz ResNets
Approximation theory for 1-Lipschitz ResNets
Davide Murari
Takashi Furuya
Carola-Bibiane Schönlieb
55
0
0
17 May 2025
Bridging the Theoretical Gap in Randomized Smoothing
Bridging the Theoretical Gap in Randomized Smoothing
Blaise Delattre
Paul Caillon
Quentin Barthélemy
Erwan Fagnou
Alexandre Allauzen
AAML
131
0
0
03 Apr 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
82
2
0
01 Nov 2024
Certified Causal Defense with Generalizable Robustness
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
137
0
0
28 Aug 2024
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
Nicholas H. Barbara
Ruigang Wang
I. Manchester
82
4
0
19 May 2024
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
59
11
0
29 Sep 2023
Deep Isometric Learning for Visual Recognition
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi-An Ma
Jitendra Malik
VLM
56
55
0
30 Jun 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
154
102
0
20 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley
  Transform
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
50
104
0
04 Feb 2020
Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear
  Networks
Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear Networks
Wei Hu
Lechao Xiao
Jeffrey Pennington
57
113
0
16 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
396
42,299
0
03 Dec 2019
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional
  Networks
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
80
116
0
03 Nov 2019
Trivializations for Gradient-Based Optimization on Manifolds
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
102
126
0
20 Sep 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
87
456
0
12 Jun 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,036
0
08 Feb 2019
Fixup Initialization: Residual Learning Without Normalization
Fixup Initialization: Residual Learning Without Normalization
Hongyi Zhang
Yann N. Dauphin
Tengyu Ma
ODL
AI4CE
85
349
0
27 Jan 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple
  Parametrization of the Orthogonal and Unitary Group
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
46
198
0
24 Jan 2019
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
321
0
13 Nov 2018
Complex Unitary Recurrent Neural Networks using Scaled Cayley Transform
Complex Unitary Recurrent Neural Networks using Scaled Cayley Transform
K. D. G. Maduranga
Kyle E. Helfrich
Qiang Ye
50
32
0
09 Nov 2018
Can We Gain More from Orthogonality Regularizations in Training Deep
  CNNs?
Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?
Nitin Bansal
Xiaohan Chen
Zhangyang Wang
OOD
79
188
0
22 Oct 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
298
353
0
14 Jun 2018
Scaling provable adversarial defenses
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
70
446
0
31 May 2018
The Singular Values of Convolutional Layers
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
81
202
0
26 May 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
164
477
0
12 Apr 2018
i-RevNet: Deep Invertible Networks
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
83
333
0
20 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,433
0
16 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation
  Invariance for Deep Neural Networks
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
103
307
0
12 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory
  Approach
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
80
467
0
31 Jan 2018
Certified Defenses against Adversarial Examples
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
105
967
0
29 Jan 2018
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
75
117
0
20 Nov 2017
Resurrecting the sigmoid in deep learning through dynamical isometry:
  theory and practice
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
ODL
43
252
0
13 Nov 2017
Provable defenses against adversarial examples via the convex outer
  adversarial polytope
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
104
1,498
0
02 Nov 2017
Orthogonal Recurrent Neural Networks with Scaled Cayley Transform
Orthogonal Recurrent Neural Networks with Scaled Cayley Transform
Kyle E. Helfrich
Devin Willmott
Qiang Ye
78
131
0
29 Jul 2017
Spectrally-normalized margin bounds for neural networks
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
191
1,216
0
26 Jun 2017
An approach to reachability analysis for feed-forward ReLU neural
  networks
An approach to reachability analysis for feed-forward ReLU neural networks
A. Lomuscio
Lalit Maganti
52
357
0
22 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial
  Manipulation
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
97
511
0
23 May 2017
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Rüdiger Ehlers
91
624
0
03 May 2017
Maximum Resilience of Artificial Neural Networks
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
88
283
0
28 Apr 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
136
807
0
28 Apr 2017
On orthogonality and learning recurrent networks with long term
  dependencies
On orthogonality and learning recurrent networks with long term dependencies
Eugene Vorontsov
C. Trabelsi
Samuel Kadoury
C. Pal
ODL
75
241
0
31 Jan 2017
Regularizing CNNs with Locally Constrained Decorrelations
Regularizing CNNs with Locally Constrained Decorrelations
Pau Rodríguez López
Jordi Gonzalez
Guillem Cucurull
J. M. Gonfaus
F. X. Roca
68
133
0
07 Nov 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
200
938
0
21 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
239
8,548
0
16 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
324
7,971
0
23 May 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
186
1,940
0
25 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Unitary Evolution Recurrent Neural Networks
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
73
769
0
20 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
251
14,912
1
21 Dec 2013
12
Next