Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.07167
Cited By
Orthogonalizing Convolutional Layers with the Cayley Transform
14 April 2021
Asher Trockman
J. Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Orthogonalizing Convolutional Layers with the Cayley Transform"
50 / 51 papers shown
Title
Approximation theory for 1-Lipschitz ResNets
Davide Murari
Takashi Furuya
Carola-Bibiane Schönlieb
55
0
0
17 May 2025
Bridging the Theoretical Gap in Randomized Smoothing
Blaise Delattre
Paul Caillon
Quentin Barthélemy
Erwan Fagnou
Alexandre Allauzen
AAML
131
0
0
03 Apr 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
82
2
0
01 Nov 2024
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
137
0
0
28 Aug 2024
On Robust Reinforcement Learning with Lipschitz-Bounded Policy Networks
Nicholas H. Barbara
Ruigang Wang
I. Manchester
82
4
0
19 May 2024
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
59
11
0
29 Sep 2023
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi-An Ma
Jitendra Malik
VLM
56
55
0
30 Jun 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
154
102
0
20 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
50
104
0
04 Feb 2020
Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear Networks
Wei Hu
Lechao Xiao
Jeffrey Pennington
57
113
0
16 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
396
42,299
0
03 Dec 2019
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
80
116
0
03 Nov 2019
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
102
126
0
20 Sep 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
87
456
0
12 Jun 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,036
0
08 Feb 2019
Fixup Initialization: Residual Learning Without Normalization
Hongyi Zhang
Yann N. Dauphin
Tengyu Ma
ODL
AI4CE
85
349
0
27 Jan 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
46
198
0
24 Jan 2019
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
321
0
13 Nov 2018
Complex Unitary Recurrent Neural Networks using Scaled Cayley Transform
K. D. G. Maduranga
Kyle E. Helfrich
Qiang Ye
50
32
0
09 Nov 2018
Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?
Nitin Bansal
Xiaohan Chen
Zhangyang Wang
OOD
79
188
0
22 Oct 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
298
353
0
14 Jun 2018
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
70
446
0
31 May 2018
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
81
202
0
26 May 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
164
477
0
12 Apr 2018
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
83
333
0
20 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,433
0
16 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
103
307
0
12 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
80
467
0
31 Jan 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
105
967
0
29 Jan 2018
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
75
117
0
20 Nov 2017
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
ODL
43
252
0
13 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
104
1,498
0
02 Nov 2017
Orthogonal Recurrent Neural Networks with Scaled Cayley Transform
Kyle E. Helfrich
Devin Willmott
Qiang Ye
78
131
0
29 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
191
1,216
0
26 Jun 2017
An approach to reachability analysis for feed-forward ReLU neural networks
A. Lomuscio
Lalit Maganti
52
357
0
22 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
97
511
0
23 May 2017
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Rüdiger Ehlers
91
624
0
03 May 2017
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
88
283
0
28 Apr 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
136
807
0
28 Apr 2017
On orthogonality and learning recurrent networks with long term dependencies
Eugene Vorontsov
C. Trabelsi
Samuel Kadoury
C. Pal
ODL
75
241
0
31 Jan 2017
Regularizing CNNs with Locally Constrained Decorrelations
Pau Rodríguez López
Jordi Gonzalez
Guillem Cucurull
J. M. Gonfaus
F. X. Roca
68
133
0
07 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
200
938
0
21 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
239
8,548
0
16 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
324
7,971
0
23 May 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
186
1,940
0
25 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Unitary Evolution Recurrent Neural Networks
Martín Arjovsky
Amar Shah
Yoshua Bengio
ODL
73
769
0
20 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
251
14,912
1
21 Dec 2013
1
2
Next